

Final Report

tigaNAV

A NAV development project

“Towards NAV v3”

Project leader
Vidar Faltinsen

Project group
John Magne Bredal – Kristian Eide – Sigurd Gartmann

Bjørn Ove Grøtan – Hans Jørgen Hoel – Erlend Mjåvatten
Magnus Thanem Nordseth – Andreas Åkre Solberg

Magnar Sveen – Stian Søiland – Gro-Anita Vindheim
 Morten Vold – Arne Øslebø

4th of December, 2003

ITEA, NTNU

 - 2 -

Abstract

tigaNAV is a NAV development project. NAV is short
for Network Administration Visualized and is NTNU’s
self developed network management solution.
Development has been going on for five years, the last
three with support from UNINETT. Currently NAV
version 2.1.5 is available, and up and running on all four
Norwegian universities and 10 colleges.1

The focus in tigaNAV has been on NAV version 3.
Actually, this work started prior to tigaNAV, in the
summer of 2002, with project NAVMore2. tigaNAV has
continued in the footsteps of NAVMore, the timeframe
has been June to November 2003. A lot of resources
have been put into the project, 14 developers have been
involved and more than 3500 work hours are spent.

tigaNAV has produced many results, this report
summarizes the work. The main objective has been to
complete the development of NAV v3 with all its
subsystems. At the time of writing we are entering an
alpha test period of NAV v3 at NTNU. Beta-testing is
planned for February to April next year and will include
installations at UiTø and HiMolde. The projected release
date for NAV v3 is set for April 2, 2004. Within this
timeframe we will finish off unfinished work and bug fix
existing code. This aside, there will be a complete feature
freeze of the system until the summer of 2004.

The focus in tigaNAV has been twofold. First we have
looked at NAV as a software product and made many
remarkable improvements (this aspect of NAV has not
really been addressed before). Second we have improved
existing functionality and introduced new features. The
table on page 87 of this report gives an at-a-glance
overview on the status of all aspects of NAV.

tigaNAV has introduced a completely new and consistent
user interface based on a common programming
language (python) with the use of templating. We have
adopted a general and powerful authentication and

1 As of now there is no publicly available licence of NAV. NAV is owned by NTNU.
UNINETT has through project participation gained free access to the product, for itself and
its members.
2 Many NAVMore results are included in 2.1.5. Other results have been in use at NTNU
throughout this year.

 - 3 -

authorization mechanism. Subversion has replaced CVS
as our proven version control system. A modular
software build system replaces the existing monolithic
approach.

Under the hood we have done a complete rewrite of the
data collection system. We have improved NAVdb to
even more accurately model the running network. The
data collection system now uses a plug-in based
architecture with fine-grained control of collection
intervals, working in parallel, and basing its SNMP
collection on a central OID database. A semi-automatic
type classifier is included improving NAV’s ability to
support new network equipment. We have also replaced
the NAV v2 seed files with a superior web front end.

The functional improvements in tigaNAV include:

 A more general operational status page with status

on all operational events (eventually). An integrated
message system to inform NAV users of scheduled
outage, special faults and other operational events.

 The device browser presenting all information on a
device in one web page with links to reports,
statistics, switch port data etc.

 The network explorer introducing a graphical
display of the network layout on a per vlan basis.

 An RRD browser with the ability to gather different
statistics on the same page or even in the same
graph.

 Device management with the ability to track
milestone events of physical devices from order and
arrival through the operational stages.

With regard to progress, the project plan was too
optimistic. The release of NAV v3 is delayed by 4
months. There are certainly many challenges in a project
of this size, this is elaborated on in the report.

To conclude, the project leader is very pleased with the
amount of work done – and the quality. There is a
fantastic enthusiasm surrounding NAV. The tigaNAV
team is a group of highly skilled developers who believe
in what they do and do their very best.

It remains to be seen if tigaNAV has achieved its goal.
2004 will reveal if NAV v3 is a proven solution. We
certainly think so.

 - 4 -

Table of contents
PREFACE ...9

1. INTRODUCTION..10
1.1 WHAT INITIATED THIS PROJECT..10
1.2 THE PROJECT OBJECTIVE ...10
1.3 EFFECTS OF THE PROJECT RESULTS...11
1.4 PERSONNEL RESOURCES ...11
1.5 SUBPROJECTS AND WORK HOURS ...11
1.6 OUTLINE OF THIS REPORT...13
1.7 NAV GLOSSARY...13

2. AUTHENTICATION, AUTHORIZATION, PROFILES..................14
2.1 RESOURCES ..14
2.2 MAIN OBJECTIVE ..14
2.3 RESULTS...14

2.3.1 User database ...14
2.3.2 Authentication and authorization ...14
2.3.3 User admin panel..17
2.3.4 Sessions...18

2.4 PROBLEMS..18
2.4.1 Double login ...18
2.4.2 Strange session related error messages19

2.5 FURTHER WORK ...19
2.6 CONCLUDING REMARKS ...19

3. THE USER INTERFACE ...20
3.1 RESOURCES ..20
3.2 MAIN OBJECTIVE ...20
3.3 RESULTS...20

3.3.1 Templating solution ..20
3.3.2 Web interface ..21
3.3.3 Front page ..22
3.3.4 Toolbox ...23
3.3.5 Quick link preferences ..24

3.4 PROBLEMS..25
3.5 FURTHER WORK...25

4. EVENT AND ALERT SYSTEM ..26
4.1 RESOURCES ..26
4.2 MAIN OBJECTIVE ..26
4.3 RESULTS...26

4.3.1 Event Engine...26
4.3.2 Alert Engine ..28
4.3.3 The SMS daemon ..28
4.3.4 Alert Profiles...28

4.4 PROBLEMS..31
4.5 FURTHER WORK ...31

4.5.1 Event Engine...31
4.5.2 NAV Profiles ...31

 - 5 -

5: THE NAV V3 DATA COLLECTION SYSTEM 32

5.1 RESOURCES ... 32
5.2 MAIN OBJECTIVE... 32
5.3 DATA COLLECTION IN NAV V3 AT A GLANCE...................................... 32
5.4 SUBSYSTEM OVERVIEW.. 33

5.4.1 NAVdb updates... 33
5.4.2 getDeviceData.. 33
5.4.3 The OID database .. 33
5.4.4 GetDeviceData Plugins.. 33
5.4.5 The cam logger... 34
5.4.6 Network topology discovery... 34
5.4.7 Vlan discovery.. 34

5.5 DETAILED DESCRIPTION OF NEW SUBSYSTEMS..................................... 34
5.5.1 The NAVdb ... 34
5.5.2 getDeviceData.. 39
5.5.3 The cam logger... 43
5.5.4 Network topology discovery... 44
5.5.5 Vlan discovery.. 44

5.6 PROBLEMS ... 45
5.7 FURTHER WORK .. 45
5.7 CONCLUDING REMARKS .. 46

6. NEW FRONT END SUBSYSTEMS.. 48
6.1 RESOURCES ... 48
6.2 MAIN OBJECTIVE ... 48
6.3 RESULTS .. 48

6.3.1 editDB: A web based front end to NAVdb.................................... 48
6.3.2 The Status page .. 53
6.3.3 Device Management... 55

6.4 PROBLEMS ... 58
6.5 FURTHER WORK... 58

7: RRD ACTIVITIES.. 59
7.1 MAIN OBJECTIVE... 59
7.2 RESULTS .. 59

7.2.1 RRD database... 59
7.2.2 makecricketconfig .. 60
7.2.3 A better and more flexible way to view graphs 61
7.2.4 Sorted Statistics for all RRD data .. 62
7.2.5 Threshold Monitor ... 62
7.2.6 Large Scale Cricket Test .. 63
7.2.7 Reliable Collection of Data to the network load map.................. 64

7.3 PROBLEMS ... 64
7.4 FURTHER WORK .. 64

8. ENHANCED MESSAGE OF THE DAY .. 65
8.1 RESOURCES ... 65
8.2 MAIN OBJECTIVE ... 65
8.3 RESULTS .. 65

8.3.1 Message of the day ... 65

 - 6 -

8.3.2 Set on maintenance ...66
8.3.3 Database design..67
8.3.4 Background processes ..67

8.4 FURTHER WORK ...68

9. DEVICE BROWSER...69
9.1 RESOURCES ..69
9.2 MAIN OBJECTIVE ..69
9.3 RESULTS...69

9.3.1 General view...69
9.3.2 Services ...70
9.3.3 Modules and Ports..71
9.3.4 Proper URLs...72
9.3.5 RRD browser ..72

9.4 PROBLEMS..73
9.4 FURTHER WORK ...74
9.5 CONCLUDING REMARKS ...74

10. ROUND TRIP AND PACKET LOSS ..76
10.1 RESOURCES ..76
10.2 MAIN OBJECTIVE ..76
10.3 RESULTS...76

11. NEW NETWORK UTILITIES...78
11.1 RESOURCES ..78
11.2 MAIN OBJECTIVE ..78
11.3 RESULTS...78

11.3.1 Machines behind a switch port ...78
11.3.2 Recently used switch ports and on-the-fly status........................78
11.3.3 Network Explorer..79

12. VERSION CONTROL AND SOFTWARE BUILD81
12.1 RESOURCES ..81
12.2 MAIN OBJECTIVE ..81
12.3 RESULTS...81

12.3.1 CVS vs. Subversion ...81
12.3.2 Restructuring source code repository layout..............................82
12.3.3 Software build system ...82
12.3.4 Restructuring installation layout ..83

12.4 PROBLEMS..84
12.5 FURTHER WORK ...85
12.6 CONCLUDING REMARKS ...85

13. NAV VERSION 3 ...86

13.1 SUMMARY OF NAV V3 FEATURES..86
13.2 NAV V3 TEST AND RELEASE PLAN..88

14. SUMMARY AND CONCLUSION...90
14.1 PROJECT SELF CRITICISM ...90
14.2 CONCLUSION..92

 - 7 -

List of figures

No Legend Page
1 How Cheetah works 21
2 The web interface 22
3 A front page with no eMotD or boxes down 23
4 The quick link preferences page 24
5 The Event and Alert System 27
6 The NAV Profiles database 29
7 The Alert Profile main page 30
8 NAVdb with new and/or significant fields 35
9 GetDeviceDate component overview 39
10 The edit database subsystem 49
11 Web form for adding a new netbox (IP device) 50
12 Form for editing or deleting equipment types 50
13 Flow diagram for adding a IP device 52
14 The Status Page 54
15 User Preferences for the Status Page 54
16 The device triangle: device, module and netbox 55
17 Processes in a device’s life 56
18 Life cycle of two physical devices 57
19 The RRD database 60
20 Example of eMotD message 66
21 The eMOTD database design 67
22 Inconsistent outage and maintenance timeframe 68
23 The Device Browser 70
24 Services view in device browser 70
25 The services matrix 71
26 The Device Browser Switch View 72
27 The RRD browser 73
28 Packet loss and roundtrip time 77
29 Service (imap) availability and response time 77
30 Network Explorer 80
31 NAV v3 preferred installation layout 84
32 NAV v3 features 87

 - 8 -

Preface

It is Christmas time again, and time for another NAV report, or for some of
us, time for the making of another NAV report. This report ends the fifth
year of NAV development; it also ends the fourth NAV project. We have
already had NAVMe, NAVRun and NAVMore. Now it is tigaNAV (and for
our ignorant none-Indonesian speaking audience we should immediately
explain… tiga means 3…).

tigaNAV is by far the biggest project – both in hours and personnel. More
than 3500 work hours are spent, a total of 14 developers have been
involved. An impressive amount of code is produced. The NAV-developers
mailing list has seen a total of 11763 postings! There have been many
discussions, many ideas, loads of enthusiasm and pure good will.

And – let there be no doubt – there has been quality work. This 92 page
report is packed with results. Say no more.

The project leader would like to thank the entire development team. You
should be proud – every one of you! After all, you have made NAV v3
possible. No more – no less.

And please – hang in there. Another year is coming up. And more ideas, I’m
sure (yes, I know, Morten, requirements spec first ;)).

Last but not least, I would like to thank ITEA and UNINETT for believing
in us, for giving the tigaNAV project the necessary resources.

Vidar Faltinsen

3 This is actually 33% of all postings that have been on the list since the very first on June
30, 1999 (yes, I have them all).

 - 9 -

1. Introduction

1.1 What initiated this project

Project tigaNAV is the fourth NAV collaboration project between NTNU
and UNINETT. The project has been running from June to November 2003.
The focus has been on further development of NAV version 3.

Currently the latest available version of NAV is version 2.1.54.
Development of NAV version 3 started already in 2002 with project
NAVMore. Some of the NAVMore results (the service monitor in
particular) have been in alpha production at NTNU throughout 2003.

Project tigaNAV has continued in the footsteps of NAVMore. The ultimate
goal has been to make available a stable version 3 of NAV for NTNU and
for UNINETT members.5

1.2 The Project Objective

tigaNAV introduces improvements on many aspects of NAV. The most
important objectives of project tigaNAV have been:

 New and fundamentally improved NAVdb data collection system.
 Completely new GUI, more consistent look, use of templating.
 Flexible scheme for authorization allowing finer grained control of user

rights.
 Message system to inform NAV users of planned outage, errors or other

operational events.
 Device browser gathering all information on one device in one page

with links to related statistics, reports etc.
 New web front end that replaces the text based seed files.
 A database (RRDdb) containing meta information on all statistical data.

New mechanisms for sorting, structuring and combining statistics (RRD
browser). Improved threshold monitor.

 A general module monitor that reports outage on modules in a chassis or
a stacked (physically or virtually) switch.

 Device management with the ability to track milestone events of
physical devices from order and arrival through the operational stages.

4 As of now there is no publicly available licence of NAV. NAV is owned by NTNU.
UNINETT has through project participation gained free access to the product, for itself and
its members.
5 For a complete overview of all NAV functionality see chapter 13.

 - 10 -

1.3 Effects of the project results

NAV version 3 will ultimately be available to all UNINETT members.
NAV v3 has many new features compared to NAV v2. It will even better
aid the network management process. NAV v3 also takes its first small steps
into the world of system management (service monitor, server statistics).

1.4 Personnel resources

A total of 14 persons have been involved in tigaNAV, some of them staff,
many of them students. tigaNAV is a collaboration between ITEA's network
group, ITEA's systems group, ITEA's user support group and UNINETT.
The table below gives an overview:

Person Organization Focus
Vidar Faltinsen ITEA network Project leader
Morten Vold

ITEA network

Authentication, authorization, subversion
repository, coordination of developers,
installation/build

John Magne Bredal ITEA network Cricket, RRD, SNMP traps
Gro-Anita Vindheim ITEA network New front-end subsystems, emotD
Kristian Eide

ITEA network

gDD, OIDdb, cam logger, network and vlan
topology discovery

Sigurd Gartmann ITEA network report generator, gDD, OIDdb
Magnus Nordseth ITEA systems Device browser, RRD
Stian Søiland ITEA systems Device browser
Arne Øslebø UNINETT Alert engine
Andreas Åkre Solberg UNINETT NAV profiles
Magnar Sveen ITEA network User interface
Hans Jørgen Hoel ITEA support editDB, device management
Erlend Mjåvatten ITEA systems RRD
Bjørn Ove Grøtan ITEA systems emotD

1.5 Subprojects and work hours

The project plan defined 12 subprojects. There has been activity on all
subprojects. Most of the goals have been reached, some tasks have been
postponed. We will comment on that in depth later in the subproject
chapters of the report.

An overview of budgeted and used hours is shown. We also indicate
objective achievement in percentage:

 - 11 -

 Hours

 Subproject Ch Participants

 B
ud

ge
t

 U
se

d

 G
oa

l
ac

hi
ev

em
en

t

1 Authentication, authorization, profiles 2 Morten 160 155 90 %
2 User interface 3 Magnar, Morten 280 360 83 %
3 Event and alert system 4 Kristian, Arne, Andreas 280 200 90 %
4 Data collection system 5 Kristian, Sigurd 360 960 97 %
5 New front-end subsystems 6 Hans Jørgen, Sigurd,GA 260 345 70 %
6 RRD activities 7 John Magne, Erlend 440 375 75 %
7 Enhanced Message of the day 8 Bjørn Ove, Gro-Anita 120 80 75 %
8 Device browser 9 Stian, Magnus 400 430 75 %
9 Round trip and packet loss 10 Magnus 40 20 50 %
10 New network utilities 11 Sigurd, Gro-Anita 80 40 30 %
11 Version control and software build 12 Morten 80 120 80 %
 Installation, alpha test Morten 0 110

12 Project administration All 240 350
 Total 2740 3545

As the table indicates we have used more time than estimated. Most of the
subprojects have been roughly correctly estimated, there is one exception
however; subproject 4.

In subproject 4 we have done a complete rewrite of the NAVdb collection
system. There are many advantages with the new system, which we
elaborate in chapter 5. We have to admit though, that we underestimated the
task at hand. And since a consistent NAVdb is so fundamental to the rest of
NAV, delays in this subproject have been a problem. Fortunately we were
running on the old collection system in the busy first months of the project.

The project plan had a scheduled deadline set for mid August. Most of the
subprojects were finished within this deadline, but not all. The delays have
been in subproject 1 (done in September) and subprojects 4, 5 and 7 (done
in November).

Our initial plan was to have a running alpha installation at NTNU by
October 1. Due to the mentioned delays this has been postponed. At the time
of writing this alpha test is finally being established. We elaborate on future
release plans in chapter 13.2.

 - 12 -

1.6 Outline of this report

Chapter 2-12 of the report describe in detail the results of all subprojects (1-
11). Each chapter follows the same outline. The length may vary, typically
in correspondence with the number of hours spent on the subproject.6

Chapter 13 gives an overview of all NAV v3 features and a suggested plan
for further development and release.

Chapter 14 gives a summary of the project work and concludes this report.

1.7 NAV glossary

The following NAV specific terms may be used in this document:

Term Meaning

Device Physical device identified by a unique serial number.

Netbox /
IP device

IP device; i.e. a device that is configured with an IP
address.

gDD getDeviceData – the data collection system.

vlanPlot The network load map of NAV v2

NAVdb The database containing the network model, the heart
of NAV.

RRD Round Robin Database, open source solution.

RRDdb A part of NAVdb. Stores meta information on all RRD
statistics.

OIDdb A part of NAVdb. Contains information on the SNMP
data we poll from the equipment.

editDB The NAV v3 “Edit database” tool that replaces the
NAV v2 seed files.

eMOTd The NAV v3 message system

6 This report is a collaboration effort with contributions from many project members. Thus
the style of writing may vary from chapter to chapter.

 - 13 -

2. Authentication, authorization, profiles
2.1 Resources

Subproject number 1
Subproject leader Morten Vold
Developers Morten Vold, Magnar Sveen
Hours Budget: 160 Used: 155
Objective achieved 90%

2.2 Main objective

Whereas NAV v2 was dependant upon an external user database and
authentication scheme (provided by Apache and flat password files), we
want NAV v3 to have an integrated database of user accounts. We want
authentication during web login to be integrated in the user interface, and
login sessions to be managed with cookies. Also, we want a more fine-
grained control over user authorization, through implementing the concept
of an unlimited number of account groups. These objectives also spawn the
need for an account (user) administration panel.

2.3 Results

2.3.1 User database

The user database was adapted from the work done by Andreas Åkre
Solberg (UNINETT) on the Alert Profiles system (see 4.3.4), and is
contained within the "NAV profile" database (see figure 6, chapter 4). The
database stores accounts, account groups, privilege information for account
groups and preference settings for accounts. According to the project plan,
the user database is feature complete - although testing of external user
insertion has not been performed (such as importing from NTNU's BDB
system).

2.3.2 Authentication and authorization

A python module (using mod_python for Apache) has been written to
intercept all requests to the Apache server running NAV. This module
performs authentication and authorization of every request. If either
authentication or authorization fails, the web client is redirected to the NAV
login page. If both are successful, control of the request is returned to
Apache, which decides what to do with it. This means that any document on
the NAV web server can be protected by NAVs authorization scheme.

Authentication is password based. Passwords are stored as MD5 hashes in
the user account database. The authentication method should be
transparently replaceable.

 - 14 -

An authorization scheme has been established. Privileges may be granted to
account groups based on a "subject, action, target" (or "who, what, where",
if you will) principle. Whenever a piece of code needs to establish whether
the logged in user has sufficient privileges to perform a specific action, it
asks through a single API call "Is user X allowed to do Y with Z?"
Privileges cannot be granted to individual user accounts, only to account
groups. The privileges of an individual user are the combined privileges
granted for the groups the user is a member of.

At the time, the only privilege name in use is "web_access". The
mod_python module that performs authorization uses this privilege name to
establish whether the authenticated user is allowed to retrieve the URLs
he/she is asking for in a request. The same functionality is used to limit
which hyperlinks are displayed to an authenticated user in several
subsystems (why display hyperlinks to URLs the user is not allowed to
fetch?). Translated more literally into the "subject, action, target"-scheme of
things, the module calls the API function to ask: "Does user X have
web_access privilege to /some/document/url?".

All logic to determine the outcome of such privilege questions is contained
within one API call. As of today, privilege specifications are stored in the
"NAV profiles" database, but they could just as easily be stored in a
different system, on a different server. Only the one API call needs to be
changed for all of NAV to make this possible. Many of these ideas come
from thoughts of integrating NAV with external user authentication
systems, such as the FEIDE project of UNINETT.

2.3.2.1 Ideas for a typical Authorization setup

Ideas on how to apply the flexibility of the new authorization system to a
NAV installation at NTNU (and to a default NAV installation) have been
discussed. The basic scheme is to grant the most typical combinations of
privileges to a small set of account groups. Whenever a new user is added
to NAV, his/her access privileges are set by adding him/her to a select
subset of these groups.

 - 15 -

The proposed default groups are as follows (group names may vary from
final spec.):

Anonymous* Any unauthenticated (not logged in) user. The privileges

granted to this group will be the minimum set of privileges for
any user, and should therefore be set at a minimum (all users
are considered members of this group during authorization of
any kind).

ReadMyOrg This group is typically intended for faculty IT personnel, but
anyone that needs to be granted access to view network
information within their organization can also fit this group. At
NTNU, probably anyone who receives login access to NAV
will be a member of this group.

Privileges are granted to the all of the web tools, except editDB
(see chapter 6.3.1) and NAV/User administration tools.

Privileges are granted to view/receive information on any IP
address within the prefix ranges of the organizations the user
belongs to, and to view netboxes that belong to any of the
organizations the user belongs to.

Privileges should also be granted to see/receive information
about any router or switch (The idea is that everyone should be
able to see their way out through the network).

ReadAll This group is aimed at users that should be able to see
information about everything on the network.

Privileges are granted to the all of the web tools, except
EditDB and NAV/User administration tools.

Privileges are granted to view/receive information on any IP
address.

Privileges should also be granted to see/receive information
about any router or switch.

Nett This group is intended for the network maintenance crew (may
be applicable only to NTNU)

Privileges are granted to the crew's repository of maintenance
documentation and to local NAV additions created by the crew
themselves.

Sdrift This group is intended for the server/service maintenance crew
(may be applicable only to NTNU).

Privileges are similar to the Nett group.

Admins* This group is automatically granted all privileges.

*This group is a built-in system group in NAV and will always be present.

 - 16 -

SMS This group is granted the privilege of receiving SMS messages
in Alert Profiles.

WriteMyOrg This group is intended for faculty IT personnel that need
privileges to add or change netboxes within their faculty.

Privileges are similar to the ReadMyOrg group, but using
boxwrite privileges instead of boxread, and also providing
access to the editDB web tool.

The proposed set of privileges that can be granted to these groups are as
follows:

web_access Access to a specific URL. The target is stored as a regular

expression – every request to authorize web access to a specific
URL will attempt to match this URL against these regular
expressions.

boxread Access to see/receive information about a specific netbox or IP
address. The target is stored as an expression; examples are “ip
in myorg”, “ip in 129.241.75.0/24”, “owner = myorg”, “cat in
gw,sw”. When asked to check whether a user has privileges to
view information on a particular IP address, the API call will
evaluate these expressions on the fly, extracting information
from the netbox table if needed.

alerttype Access to receive alerts through a specific service, such as SMS
or Instant Messaging. Target is simply a mnemonic for the
service in question. The group SMS (as proposed above) would
be granted the alerttype privilege to the target “sms”.

reportaccess Access to specific reports in the report generator. The target can
be stored as a single name or list of names of specific reports.
This privilege will be used by the report generator alone.

boxwrite Write access using the same target semantics as the boxread
privilege.

2.3.3 User admin panel
A user account administration panel has been implemented. It allows for
creating/editing/deleting accounts and account groups, and has a
rudimentary interface for granting and revoking privileges to account
groups.

It also has support for associating user accounts with organizations.
Organizational memberships will later be used by the authorization system
to determine which network information a user is allowed to see.

 - 17 -

2.3.4 Sessions

Session handling is in place, using cookies for session identification. Any
value can be made persistent during the lifespan of a session. Session data is
stored as a "pickled" (serialized) Python object in the file system.

When a web client requests a document on the Apache web server, the
authentication/authorization module takes control and tries to determine
whether the request belongs to an existing session. If not, a new session
object is generated with a unique 32-letter identification string. The id string
is posted as an HTTP cookie to the client. In future requests, the web client
will return the cookie containing the id string to the server, and the
authentication/authorization module will load an existing session object
identified by this string.

The cookie will only exist for as long as the user's web browser is open.
Next time the browser is opened and requests a document on the NAV web
server, it will no longer submit the cookie, and a new session object will be
generated. In the file system we now have a dead session file, which should
be removed. It is also good security practice to expire sessions that have not
been in use for a number of minutes. Regular deletion of dead/expired
session files has not yet been implemented, and old files will clutter the
server's temporary directory until deleted manually.

2.4 Problems

A few mysterious problems with the login system plagued the developers
during the project, but they were eventually solved.

2.4.1 Double login

One of these problems was having to log in twice before one was granted
access to a page. The problem turned out to be the cookie mechanism.
Developers working from within the itea.ntnu.no domain could reach the
development server as http://isbre/, whereas the fully qualified domain
name of the server was http://isbre.itea.ntnu.no/.

When retrieving http://isbre/ and logging in there, the server would return a
new session cookie, which the browser registered as belonging to the
domain name isbre. Upon login, many pages would redirect the client to the
fully qualified domain name address of the server. The browser would not
recognize isbre.itea.ntnu.no as the same server as isbre, and would therefore
not return the cookie set by isbre. Not receiving a session id cookie with the
request, the server would promptly generate a new session object and send a

 - 18 -

new cookie. As a result, the login credentials used with the previous session
were lost, and the login page would display again.

Developers who consistently used isbre.itea.ntnu.no as their address for the
development server would never see this problem. The problem was solved
by configuring Apache itself to redirect any requests made against an
unqualified hostname (such as an IP address or the abbreviated isbre) to
the fully qualified hostname.

2.4.2 Strange session related error messages

An attempt to read a session file that was simultaneously being written to by
another web process would yield strange error messages that seemed
random to the viewer. The solution was to implement locking of the session
file. An exclusive write lock is placed on the file before it is written, and a
shared read lock is placed on the file before it is read.

2.5 Further work

Not all objectives were achieved in detail. These things need to be further
worked on:

• The user admin panel lacks a proper design template. A rough template

is in place; this should be modified to make the interface more pleasant-
looking.

• The session handling lacks automatic cleanup of dead and/or expired
sessions. A cleanup function exists, but a system for calling it regularly
must be devised.

• The only system that actually uses the authorization scheme so far is the
URL-checking python module. The authorization API call must be
extended to provide functionality for authorizing different kinds of
actions against IP address ranges and netboxes, etc., based on the
organizational memberships of users. These ideas have been described
previously, but implementation has been postponed because more
important features have been prioritized.

• A script must be written to perform the Python API privilege-checking
call from the command line. This script can be used by non-Python
scripts and programs to interface with the privilege system of NAV, thus
the functionality need not be duplicated for every programming
language.

2.6 Concluding remarks

Subproject 1 has successfully accomplished most of its objectives. The
missing features listed under "Further work" must be implemented before
the official release of NAV 3.0. Although the entire tigaNAV project has
been belated, subproject 1 has come very close to its budgeted hours.

 - 19 -

3. The User Interface
3.1 Resources

Subproject number 2
Subproject leader Morten Vold
Developers Magnar Sveen, Morten Vold
Hours Budget: 280 Used: 360
Objective achieved 5/6 (83%)

3.2 Main Objective

The main objectives of this subproject are:

1. The web interface in all NAV subsystems are implemented in the same

language; Python. (one exception: alert profiles)
2. A common scheme for templating is used. Within a template html and

styles are separated using CSS. (complete)
3. tigaNAV introduces a new NAV design, possibly with scroll down

menus, new side bar, if any. (complete)
4. There are mechanisms for the template system to easily integrate the

NAV environment within each subsystem. (complete)
5. A general concept/file structure for all subsystems. Each subsystem

gives structured meta information about itself (icon, description, url etc).
(complete)

6. User profiles may alter the look and give a personal view. (not
complete)

3.3 Results

3.3.1 Templating solution

The Python templating engine Cheetah (http://www.cheetahtemplate.org/)
was chosen in order to help separate content, graphic design and program
code.

See figure 1 for an illustration of how Cheetah works. During development
a .tmpl file is created. This file looks like html-code, but includes Cheetah
flow control and variables. The template file is compiled to a run able .py
file when first installing the product. When the web server gets a request for
a page using the template, the .py template is used to create an html-
formatted file that is sent to the client.

 - 20 -

Figure 1: How Cheetah works

For NAV the most notable template is nav.web.templates.MainTemplate,
containing the NAV web interface. All other templates inherit from
MainTemplate.

Some templates were developed specifically for a tool, allowing the
programmer to focus on delivering data, and not on looks and web design.
The tools in question were the Report and Machine tracker tools.

All other NAV tools use the main template, easily inserting their pages by
replacing the template's content-function.

3.3.2 Web interface

The focus of the NAV web interface is on quick navigation and easy access
to the tools you use the most. Take a look at figure 2 for an overview of the
different elements making up the standard interface.

 - 21 -

Figure 2: The web interface

1. NAV logo. Clicking the logo will always lead back to the front page.
2. Quick link bar. Individually customizable, this is the best place for links

to frequently used tools and web pages.
3. Navigation info. This shows where in NAV you are at any time, giving

an overview of structure and easing navigation of the page.
4. Login/logout button. To get access to restricted information and use

your own preferences, log in here.
5. Footer. Copyright notice and information about what user is logged in.

The content area is on a simple white background. There are a lot of tools in
NAV, and more are being developed. Most of these focus on function and
not form. With a neutral white background, the design of these tools does
not look out of place.

3.3.3 Front page

The front page serves two main purposes. For the new user, it welcomes and
describes the purpose of the site, and presents contact information. Other
users are interested in the current status, planned downtime etc. This is
presented as Messages of the Day and Status Now. See Figure 2.3.

 - 22 -

Figure 3: A front page with no eMotD or boxes down

The information on the front page is limited to the most recent messages and
dead boxes. More information and more entries are available from their
respective pages.

There are also internal NAV-links and external links. The internal links are
checked towards the user’s authorization before they are shown. All static
information on the front page is easily customizable.

3.3.4 Toolbox

The toolbox is an easily accessed collection of tools, mainly aimed at the
new user of NAV. Each tool features a unique icon and is verbosely
described.

Metadata about the tools is collected and maintained in the same location,
making it easy to add, remove or change information about tools at a later
date. The idea is that new tools can be developed and released to all NAV
installations with ease.

All tools the user doesn't have access to are filtered out. A new user isn't
flooded with tools he or she isn't allowed to use - and probably isn't
interested in using. The users can easily identify the tools available to them.
The toolbox for an anonymous user on the development box for
NAV v3 can be seen in figure 2.2.

Senior users might feel the toolbox is cluttered because of the sheer number
of tools - but these users aren't the intended users of the toolbox. By using

 - 23 -

the navigation bar preferences menu, they can easily add quick links to the
tools they use often.

3.3.5 Quick link preferences

The quick link bar (see 2 in figure 2) is fully customizable for a registered
user. A user can choose from a set of default choices, or add his or her own
links.

This is the easiest way for a user to get quick access to frequently used tools
and other resources. The quick link bar stays the same, independent of what
page in NAV the user is browsing.

Figure 4: The quick link preferences page

See Figure 2.4. The leftmost box represents the navigational bar, and what
links should appear there. In addition there are two optional quick link
boxes that represent dropdown menus, to allow for large amounts of links.
These can be turned on and off using the checkboxes on the top.

Personal links can be removed, edited or added by clicking the trashcan
icon, pen-and-paper icon or the Add personal link button, respectively. This
is the same interface that a site admin uses to edit the default links for
anonymous and new users.

 - 24 -

3.4 Problems

The site was designed using Cascading Style Sheets version 2. Some older
browsers do not support this very well. While the site looks good in all new
browsers, some old browsers will look strange.

Forms for filling in information need to be hand written since they are very
rarely equal in form and function. Making all forms have the same look
requires some work - therefore it hasn't been a priority.

In order to set the defaults for anonymous and new users in the quick link
preferences, you need to be logged in as site admin. Giving this
functionality to other users isn't supported.

3.5 Further Work

In addition to fixing the problems mentioned in the previous section:

 Unique icons for all subsystems should be created. As of now, some are

blank while others are re-used.

 Only a few of the subsystems have been given special attention for

design work. Programmers of some other subsystems have requested a
design overhaul.

 While all subsystems have icons, they're at the moment only used for the

toolbox. Displaying these icons while using the actual tools would be
worthwhile, if an unobtrusive spot was found.

 The quick link preferences page (Figure 2.4) could use some work to

make it more intuitive.

 The quick link dropdown menus are named "Quick link #1" and "Quick

link #2". Some easy way to change the name of your personal dropdown
menu would be a nice feature.

 - 25 -

4. Event and Alert system
4.1 Resources

Subproject number 3
Subproject leader Vidar Faltinsen
Developers Kristian Eide, Andreas Åkre

Solberg, Arne Øslebø
Hours Budget: 280 Used: 200
Objective achieved 90%

4.2 Main objective

 Support for new event types in event engine, i.e. module State and

threshold State (completed).
 SMS support with Alert Engine (completed)
 Support for new filter matches (achieved). Improvements in the NAV

profiles GUI, make it more intuitive, less complex (partly achieved).
Make NAV profiles a more integrated part of NAV (the goals we aimed
for completed)

 Jabber support (postponed)

4.3 Results

The Event and Alert system was developed in project NAVMore. See the
NAVMore final report for details7. The system is “fresh”, with tigaNAV we
saw the need to elaborate on some important aspects. A recap of the overall
picture is given on figure 5.

4.3.1 Event Engine

Event Engine processes events generated by other systems in NAV; it is
plug-in-based and the plug-ins do the actual processing of incoming events.
The plug-in will take any necessary action and decide if sending an alert to
Alert Engine is warranted.

New in event Engine is the addition of two plug-ins:

 MaintenanceState

Netboxes (and services) can be put on maintenance; when in this state
the actual sending of alerts related to the netbox (service) is disabled. All
events are processed however, and will thus appear in the alert history,
and status for the netbox, as seen on the NAV web page, will be updated

7 The NAVMore report (in Norwegian): http://metanav.ntnu.no/NAVMore/NAVMore.pdf

 - 26 -

as normal.

 ThresholdState
NAV monitors several statistics on devices, and when a predefined
threshold is exceeded a threshold event is generated; when the statistic
later falls below another predefined limit another event is generated.
This plug-in does text formatting and sends an alert to alert engine.

 pping

SNMP

Trap parser

thresholdMon
moduleMon

SMS

Web status
report

Alert history

Event Engine

Alert Engine

Topology Info

email

Alert queue

serviceMon

Event queue

Figure 5: The Event and Alert System

 - 27 -

A note on the 'severity': each event and alert has a given severity-value,
which is an integer defined to be between 0 and 100, where 100 means the
highest severity / priority. For example, users can configure their alert
profile to only send alerts during the night for alerts with a severity higher
than a specific value.

Currently, boxShadow and boxSunny (events sent instead of boxDown and
boxUp, respectably, when a netbox appears to be unreachable because of
another netbox being down) alerts will have their severity lowered.

4.3.2 Alert Engine

We have not done much work on Alert Engine in tigaNAV, only minor
improvements and bug fixing.

4.3.3 The SMS daemon

The SMS daemon is ported from NAV v2 to NAV v3. No major changes
have been implemented, only adjustments to the new environment with
Alert Engine. The solution has been tested and works fine.

4.3.4 Alert Profiles

Development of Alert Profiles started in the early summer of 2002, first as
an independent UNINETT project, later with the ambition to deliver an
integrated NAV solution through the NAVMore project. The focus in
tigaNAV has been to continue this integration process. We have worked
with:

• Integrated web look

Alert Profiles is written in PHP (and will remain that way), while the
new NAV GUI (see chapter 3) is based on a python templating solution.
The challenge has been to transparently include the dynamic NAV
header with personal user information etc. Our solution has been to
implement a python script that takes a username as input and returns an
empty template. This script is in turn called from Alert Profiles.

• Integrated user database
Alert Profiles has a separate database with information on all users and
their alert profiles (a sensible solution, also analogous to the NAV v2
trapdetect database). In tigaNAV we have integrated the work done on
authentication and authorization into the Alert Profiles database. Figure
6 gives an updated picture. The tables 1-4 are related to the user
accounts. All management of these tables is now outside the Alert
Profiles GUI, and instead done in the user account GUI.

 - 28 -

• User documentation
Extensive user documentation is written (in English). There are three
main sections: simple usage, advanced usage and administration. A
PDF is available from http://pot.uninett.no/~andrs/nav/

Figure 6: The NAV Profiles database

• More extensive support to make filtermatches.

NAV users set up their alert profiles based on equipment groups,
which in turn are based on filters. Filters are made up of
filtermatches with matchfields. Prior to tigaNAV the matchfields
were hard coded definitions, shared among the Alert Profiles web
interface and the Alert Engine backend.

 - 29 -

http://pot.uninett.no/~andrs/nav/

Instead of hard coded values, the filtermatches now contain a
relation to a row in the matchfield table. The matchfield table,
contains a set of predefined matchfields. A matchfield is directly
related to the tables and fields in NAVdb. In addition matchfields
contain information on how to sort, group and present the
matchfields to the users. Matchfields also contain optional relations
to an operator table, determining which operators to use with the
matchfield when creating filtermatches. The relation between
filtermatches, matchfields and operators is illustrated in table 14, 16,
17 and 18 of the NAVProfile database (see figure 6).

A new tool for administrating matchfields is available for Alert
Profiles administrators. Dynamic dropdown menus can be used to
create relations to NAVdb

• More intuitive GUI
Alert Profiles is very feature rich with many possibilities. The focus
has been on maximum flexibility for the NAV user, the downside
being complexity. We have to focus on ease of use. Some measures
have been taken in tigaNAV, more will come. The most important is
the new Alert Profiles main page which immediately gives an
overview of the user’s active profile. An example is given in figure 7
below. The example user has chosen SMS alarms for all network
devices during work hours and a more limited profile for weekday
evenings and nights, yet another profile for weekends.

Figure 7: The Alert Profile main page

 - 30 -

4.4 Problems

Some problems occurred when Alert Profiles was moved to the new
development machine isbre.itea.ntnu.no. Problems were related to the
multilingual support. Multilingual support depends on the GNU gettext-tool.
gettext is not properly setup on isbre. The Alert Profiles web interface
still works, but only in Norwegian.

4.5 Further work

4.5.1 Event Engine

 More fine-tuning of BoxState and ServiceState plugins to Event
Engine; this will reduce response time even further while dis-
regarding false alarms.

 Better control over severity values; this will make it easier to filter
out uninteresting events and giving more attention to important
events using the alert profile.

 More use of the events system for communication between NAV
systems; using the event queue to notify other systems will allow
said systems to update themselves immediately to changes, for
example the addition of a new netbox.

4.5.2 NAV Profiles

 Displaying the definition of equipment groups more user friendly

 Converting the GUI and the database to English (part of the database

is translated).

 Use hasPrivilege to decide a users admin privileges and if the user
has permission to receive SMS messages.

 - 31 -

5: The NAV v3 data collection system

5.1 Resources

Subproject number 4
Subproject leader Gro-Anita Vindheim
Developers Kristian Eide, Sigurd Gartmann
Hours Budget: 360 Used: 960
Objective achieved 97%

5.2 Main Objective

 NAVdb design adjustments to achieve an even better model of the

running network (completed).
 Replace the existing collection system with getDeviceData (completed,

60% of the subproject work hours)
 Introduce an OID database for a more flexible classification of

equipment types and adhering OIDs (completed, 20% of the subproject
work hours)

 Implement a general module monitor that sends alarms on outage of
modules in switch stack (of any vendor) (completed).

 Elaborate on the collection of inventory data from routers and switches
(postponed).

 Update the cam logger, the network topology discovery and the vlan
discovery to the new environment (completed, 15% of the subproject
work hours)

5.3 Data collection in NAV v3 at a glance

Item NAV v3 NAV v2

Central OID database Yes No

Easy adding of new types without involvement
of NAV developers Yes Partial

Plugin-based architecture for data collecting Yes No

Fine-grained control of collection intervals Yes No

Support for VLAN reuse Yes Partial

Detailed information for both switch and router
modules Yes No

Store arbitrary information about a netbox Yes No

 - 32 -

5.4 Subsystem overview

5.4.1 NAVdb updates

The NAV central database, the NAVdb, has been significantly updated to
more closely model real networks. With this more detailed and realistic
world view we can store more information and give richer reports. Major
enhancements include easier maintenance, full support for VLAN reuse and
accurate modeling of multi-module switches and routers.

5.4.2 getDeviceData

A major new component of NAV v3 is getDeviceData, the central
subsystem handling all aspects of data collection from network devices
(with the exception of Cricket data). In NAV v2 this was handled by a loose
collection of scripts running every night.; problems included slow updates,
no control over what was collected (all-or-nothing) and poor code reuse,
complicating updates.

getDeviceData is a continuously running program based on plugins and the
new OID database (see next section). This allows a much higher degree of
flexibility on collection scheduling and very easy support for new device
types; modularity and avoidance of code duplication greatly reduces the
time spent on maintenance.

5.4.3 The OID database

All OID information is now centralized in the NAVdb instead of being hard
coded in source code. This makes for easy overview of supported OIDs and
also allows for fine-grained control over how often each OID is collected
for each type of network device. It has also enabled us to automatically test
new types for supported OIDs, thus significantly reducing the effort needed
to support a new type of network device in NAV; in many cases this will be
as simple as adding the type name and NAV will do the rest.

5.4.4 GetDeviceData Plugins

getDeviceData relies on plugins to do the actual work of collecting data and
updating the NAVdb to reflect reality. There are two types of plugins:
device plugins and data plugins; the former make use of the OID database to
actual gather data from the network devices, while the latter is responsible
for making the necessary changes to the NAVdb.

• Each data plugin presents a well-defined set of supported attributes

which can be set by device plugins. Examples include the uptime of the
device and the speed and duplex of each switch port on a switch.

• Each device plugin supports a set of OIDs, and after collecting one or
more of these, depending on scheduling settings, talks to the relevant
data plugin(s) to set the collected attributes.

 - 33 -

The motivation for having two types of plugins is avoiding code
duplication; two device plugins can collect the same attribute from two
different types of devices, but updating of the NAVdb can still happen in a
single location.

5.4.5 The cam logger

The cam logger, responsible for the collection of MAC addresses and CDP
data, has been updated to make use of the OID database. This has greatly
simplified its internal structure as all devices are now treated in a uniform
manner; the immediate benefit is that data collection is no longer dependent
on type information and no updates should be necessary to support new
types. Upgrades in the field can happen without the need for additional
updates to the NAV software.

5.4.6 Network topology discovery

A major feature of NAV is the ability to automatically discover the physical
topology of the network based on collected MAC and CDP data. The
network topology discovery system has been updated to the new NAVdb
design, and received some minor enhancements and internal restructuring to
facilitate maintenance.

5.4.7 Vlan discovery

While the network topology discovery system maps the physical network,
the vlan discovery system completes the picture by mapping the logical
network, that is, the broadcast domains, or VLANs, as seen by the network
users. Significant updates to fully support the reuse of VLAN numbers
across broadcast domains have been integrated in the new version.

5.5 Detailed description of new subsystems

The following sections goes into detail on each of the new or updated
subsystems involved in data collection for NAV v3, and significant changes
from the previous version are noted. The most important goal of the new
data collection system is, ironically, that users of NAV should be even less
aware of its existence; it should “just work”. The most significant new
subsystem is the OID database and its implementation in getDeviceData,
the central data collector for NAV; most of the other changes, as we will
see, follow naturally from the enhancements it brings.

5.5.1 The NAVdb

The central NAV database, the NAVdb, contains a model of the world as
seen by NAV. It has continually evolved with each new version of NAV to
more accurately model real networks, and the latest version supports all
common features of modern networks.

 - 34 -

Figure 8 shows the most important tables; note that only fields significant to
the new version of NAV are included.

Figure 8: NAVdb with new and/or significant fields

Detailed description of each table and field:

netbox
Describes a device with an IP address, and most also include SNMP
capability. All other tables reference it either directly or indirectly.

type
Lists all types recognized by NAV. It comes with all common types are
already defined, and adding new types is easily accomplished with the new
editDB web interface. In many cases this is all which is required to fully
support a new type in NAV.

New fields in NAV v3 include:

 cs_at_vlan – type boolean – updated automatically
Specifies if the type support appending @<vlan> to the community
string to collect VLAN-specific information.

 frequency – type integer – optional
Specifies the default interval time, in seconds, between data collection
for the type if no time has been set for an OID.

 - 35 -

 uptodate – type boolean – updated automatically
Specifies if all OIDs have been tested against this type; used by the
automatic OID tester, part of getDeviceData.

SNMPoid
Lists all OIDs recognized by NAV. Each OID has a unique oidkey which
identifies it; the oidkey is used instead of the numeric OID in the source
code of programs. Fields:

 oidkey – type varchar
Is unique and maps to a numeric OID (which does not necessarily have
to be unique).

 SNMPoid – type varchar
The numeric OID.

 oidsource – type varchar
Only used for descriptive purposes; name of vendor or standard which
define the OID.

 getnext – type boolean
Specifies if the OID is exact, that is, the GETNEXT SNMP type should
not be sent in the first packet. It is important this field is set correctly to
ensure reliable operation of the OID tester.

 decodehex – type boolean
Specifies if the SNMP stack should try to interpret returned hex data as
ASCII text.

 match_regex – type varchar
Used by the OID tester when determining if a type supports this OID; at
least one response must match the given regex.
Note: the whole response is matched against the regex, which should be
designed to take this into consideration.

 uptodate – type boolean – updated automatically
Serves the same purpose as uptodate for the type table. Specifies if all
types have been tested against this OID; used by the automatic OID
tester, part of getDeviceData.

typeSNMPoid
Connects the type and SNMPoid tables; each type can support several OIDs,
and each OID can be supported by more than one type. It also has one
important additional field:

 frequency – type integer
Specifies the interval time, in seconds, between data collection for the
type and OID; overrides any default value for the type.
Note: if the type has no default value and this field is not set, data for the
given type and OID will not be collected!

module
Lists all modules of both switches and routers; both gwport and swport now
reference this table. Other changes include:

 - 36 -

 module – type integer
The definition has changed to integer from varchar. The full description
of the module is stored in the descr field instead of a truncated version
being used for this field. Counting generally starts at 0, and in the case
of conflicting numbers the next available is used.

 descr – type varchar
Stores the full textual description of the module for informational
purposes.

swport
Lists all switch ports on each module of a switch. Generally unchanged
except for the addition of two new fields:

 interface – type varchar
The interface name. This should be the same interface name as seen by
CDP remote interface, and is used by the cam logger to match the two.

 vlan – type integer
Reintroduced from NAV v1 to support full VLAN reuse. It stores the
VLAN number as set on the actual switch interface. The vlan discovery
system uses this information to determine the real VLAN.

swportvlan
Lists the VLANs running on each switch port; for non-trunk ports this will
only be one, while there can be several for trunk ports. The vlan discovery
system is now solely responsible for updating this table and determines the
real VLANs running on each port; it references the vlan table instead of
storing the VLAN number directly.

gwport
Lists the router interfaces on each modules of a router. Only minor changes.

prefix
Lists all prefixes known to NAV. Almost all fields have been migrated to
the new vlan table; only the netaddr field and a reference to vlan remain.

gwportprefix
Connects the gwport and prefix tables; multiple gwports can be on the same
prefix, while each gwport can have IPs on more than one prefix. Also
contains two addition fields:

 gwip – type inet
The gateway IP.

 hsrp – type boolean
Specifies if the gateway IP is a virtual IP as per the Cisco HSRP
protocol.

 - 37 -

vlan
Lists all VLANs; all fields come from the old prefix table. The only change
is that the uniqueness requirement of the vlan field is dropped.

swp_netbox
Describes all netboxes found behind each switch port. It is filled by the cam
logger using MAC and CDP data; the topology discovery system uses the
data for determining the physical topology between switches and their
router uplinks. The only changes is that ifindex is now used to map to the
swport instead of the module / port pair, which improve robustness.

cam
All MAC addresses found on all switches monitored by NAV are logged to
this table; very useful in abuse cases for tracking the origin of an IP.
Changed from NAV v2 is that ifindex instead of the module / port pair is
used to map to a swport. The module and port is still stored for archival
purposes however.

netboxinfo
General store for information about a netbox. Supports a two-level hierarchy
using a key / var pair to map to one or more values.

 - 38 -

5.5.2 getDeviceData

As mentioned in the overview section, getDeviceData is a major new
component of NAV v3. It handles all aspects of data collection from
network devices, with the exception of Cricket which still does its own data
collection (also using the OID database). The following seconds will go
over each feature of getDeviceData in detail.

Figure 9: getDeviceData component overview

5.5.2.1 getDeviceData core

The getDeviceData core provides supporting functionality for the plugins.
This includes maintaining information about all netboxes and types, the OID
database and scheduling data collection according to the intervals specified.
getDeviceData is continuously running and thus has full control over all
scheduling decisions.

5.5.2.1 Netboxes and types

At startup, and later with a specific interval, fetches information from the
NAVdb about all netboxes, their types and the supported OIDs for each
type. The frequency field from typeSNMPoid is used to determine the
update frequency for an OID; if not specified the default frequency for the
type is used. If neither is set data will not be collected for this OID and type
combination. The data fetched from the NAVdb is available to plugins when
they are asked to do data collection.

 - 39 -

5.5.2.3 Scheduling

getDeviceData internally uses two levels of priority queues to do
scheduling; the first is the global queue containing all the netboxes; the
second is one for each netbox containing its scheduled OIDs. The reason for
having two levels is that different OIDs can have different intervals, and
although there is no guarantee for when collection will take place (this is
dependent on available worker threads) the interval must be strictly kept.
That is, if one OID has an interval of 5 and a second an interval of 10, the
OID with the 5 interval must always be collected together with the 10 as
there may be dependencies between OIDs.

As most of the time during data collection is spent waiting for data from the
network getDeviceData make use of worker threads to speed up the
collecting. The number of threads is configurable and only limited by
available computer resources; it is guaranteed that only one thread will
request data from any one netbox at a given time, thus it is safe to use a high
number of threads if allowed by machine resources and network bandwidth.
The default number should be suitable for most NAV installations however.

5.5.2.4 The OID tester

The OID tester will try to collect OIDs for netboxes looking for a valid
response; if one is received the type for the netbox is marked as supporting
said OID.

The algorithm is simple, although parallel collecting makes it highly
efficient even for larger number of OIDs and netboxes: Try to collect all
OIDs from all netboxes. Once a valid response is received the type is said to
support the OID and no further testing of this type and OID pair is
necessary. For a response to be valid it must match the given regex, or in the
case of the regex being empty any non-empty response is valid. Also, only
one thread can collect data from the same netbox at any one time.
Once an OID has been tested against all netboxes or a valid response has
been received the uptodate field of the SNMPoid table for the given OID is
set to true. Also, when all OIDs have been tested against all netboxes of a
given type, or a valid response has been received, the uptodate field of the
type table for the relevant type is set to true.

The OID tester also tests for the cs_at_vlan property; this is done simply by
trying to get the system OID with “@1” appended to the community string;
if the device responds it has the property. An exception is made for 3Com
switches which do not support this property, but still accepting the modified
community string, ignoring the added postfix.

5.5.2.5 Plugins

getDeviceData supports two types of plugins which complement each other;
having two types removes the need for code duplication and provides
maximum flexibility. The two types are described in the following sections.

 - 40 -

5.2.2.6 Data Plugins

It is the responsibility of the data plugins to update the NAVdb with
collected data. Each data plugin presents a well-defined set of supported
attributes which can be set by device plugins. Device plugins are free to
make use of as many data plugins is necessary to store all collected data.

Note that some of the plugins are dependent on others to avoid code
duplication. Refer to figure 9: Module makes use of Device, and both
Swport and Gwport make use of Module.

Currently the following data plugins are available:

1. Device

Updates the device table with attributes serial, hwVer and swVer.

2. Netbox

Updates the sysname and uptime of a netbox.

3. Module

Updates the module table with relevant fields; the module number is
required.

4. Swport

Updates the swport table with relevant fields; the ifindex is required.

5. Gwport

Updates the gwport, prefix, gwportprefix and vlan tables. Since there is
no available information to uniquely identify VLANs the updating
process is somewhat more complicated than for swports.

6. NetboxInfo

Allows storing arbitrary information about a netbox in a two-level
hierarchy using a key / var pair to map to one or more values

7. ModuleMon

The ModuleMon plugin is used for reporting modules not responding to
event Engine, the central event reporting system in NAV v3. Currently
the Midis device plugin will produce a list of responding ifindexes, and
this module will check the list against known modules for a switch; any
modules without responding ifindexes will be reported as down.

5.2.2.7 Device Plugins

The device plugins collects data from network devices and give it to data
plugins for further processing using a well-defined API. Each device plugin
supports a set of OIDs, and most importantly, how to interpret returned data

 - 41 -

from devices and convert it into a standard format for processing by data
plugins.

A device plugin is first given a netbox by getDeviceData and asked if
supports collecting any data from it. The device plugin will then typically
examine the intersection of the set of OIDs supported by the netbox and its
own set of OIDs, and give a positive response if it is non-empty (or said in
another way, if the plugin can collect at least one of the OIDs supported by
the netbox).

After all device plugins have been asked, the ones which can support the
netbox are asked to actually collect data; they are free to complement each
other, that is, one plugin can collect the speed of a switch port while another
collects the duplex. After all data collection is done the data plugins are
asked to update the NAVdb to reflect any changes.

It should be noted that not all OIDs supported by both the netbox and the
device plugin must be collected; it may be desirable to update the link status
of a switch port more often than its speed for example. The implementation
of device plugins should allow for this.

There are no dependencies between device plugins. Currently the following
device plugins are available:

1. MibIISw

Collects standard OIDs from the MIB-II standard. These include
ifSpeed, ifAdminStatus, ifOperStatus, ifDescr and ifName. It will also
report any modules not responding to the ModuleMon data plugin.

2. 3Com

Collects switch port state for PS40; speed, duplex and media type for
SuperStack switches and also serial number, hardware version and
software version for each module in a stack.

3. CiscoGw

Collects data about router interfaces from Cisco routers.

4. CiscoSw1900

Collects switch port data from C19xx switches; c1900Duplex and
c1900Portname.

5. CiscoSwCAT

Collects the standard Cisco Catalyst switch port OIDs. These include:
portIfIndex, ifName, portDuplex, portVlan, portVlansAllowed,
portTrunk and portPortName.

 - 42 -

6. CiscoSwCL3addon

Collects switch port data from Cisco CL3 switches. These include:
ifTrunk.

7. CiscoSwIOS

Collects switch port data from Cisco IOS switches. Includes ifDescr,
ifName, ifVlan, ifVlansAllowed and portPortName.

8. CiscoSwIOSaddon

Collects extra data from Cisco IOS switches. Includes iosTrunk and
iosDuplex.

9. CiscoSwMenu

Collects switch port data for C3000/C3100 series. Includes
cMenuIfIndex, cMenuPortStatus, cMenuPortType, cMenuDuplex,
cMenuTrunk and cMenuVlan.

10. HP

Collects switch port data from HP switches. Includes hpSerial,
hpHwVer, hpSwVer, hpPortType and hpVlan.

11. Server

Collects data from servers.

5.5.3 The cam logger

The cam logger collects the bridge tables of all switches, saving the MAC
entries in the cam table of the NAVdb. Additionally, it collects CDP data
from all switches and routers supporting this feature; the result is saved in
the swp_netbox table for use by the network topology discover system.

While its basic operation remains the same, it has been rewritten to take
advantage of the OID database; the internal data collection framework has
been unified and all devices are treated in the same manner. Thus, data
collections are no longer based on type information and a standard set of
OIDs are used for all devices. When a new type is added to NAV the cam
logging should “just work”, which is a major design goal of NAV v3.

One notable improvement is the addition of the interface field in the swport
table. It is used for matching the CDP remote interface, and makes this
matching much more reliable. Also, both the cam and the swp_netbox tables
now use netboxid and ifindex to uniquely identify a swport port instead of
the old netboxid, module, port-triple. This has significantly simplified
swport port matching, and especially since the old module field of swport
was a shortened version of what is today the interface field, reliability has
increased as well.

 - 43 -

5.5.4 Network topology discovery

The network topology discovery system automatically discovers the
physical topology of the network monitored by NAV based on the data in
the swp_netbox table collected by the cam logger. No major updates have
been necessary except for adjustment to the new structure of the NAVdb;
the basic algorithm remains the same. While the implementation of said
algorithm is somewhat complicated as to gracefully handle missing data, the
following is a simplified description:

 We start with a candidate list for each swport port. These are the

switches located behind a switch port and the goal of the algorithm is to
pick the one to which it is connected directly. Some of the candidate
lists, those of the switches one level up from the edge, will contain only
one candidate. We can thus pick this as the switch directly connected
and proceed to remove said switches from all other lists. After this
removal there will be more candidate lists with only one candidate, and
we can apply the same procedure again.

 If we have the complete information about the network we could now

simply iterate until all candidate lists were empty; however, to deal with
missing information we sometimes have to make an educated guess of
which is the directly connected switch. The network topology discover
system makes the guess by looking at how far each candidate is from the
router and how many switches are connected below them, and then try
to pick the one which most closely matches the current switch.

In practice the use of CDP makes this process very reliable for the devices
supporting it, and this makes it easier to correctly determine the remaining
topology even in the case of missing information.

5.5.5 Vlan discovery

After the physical topology of the network has been mapped by the network
topology discover system it still remains to explore the logical topology, or
the VLANs. Since modern switches support trunking, which can transport
several independent VLANs over a single physical link, the logical topology
can be non-trivial and indeed, in practice it usually is.

The vlan discovery system uses a simple top-down depth-first graph
traversal algorithm to discover which VLANs are actually running on the
different trunks and in which direction. Direction is here defined relative to
the router port, which is the top of the tree, currently owning the lowest
gateway IP or the virtual IP in the case of HSRP. In addition, since NAV v3
now fully supports the reuse of VLAN numbers, the vlan discovery system

 - 44 -

will also make the connection from VLAN number to actual vlan as defined
in the vlan table for all non-trunk ports it encounters.

A special case are closed VLANs which do not have a gateway IP; the vlan
discovery system will still traverse these VLANs without setting any
direction and also creating a new VLAN record in the vlan table. The NAV
administrator can fill inn descriptive information afterward if desired.

The implementation of this subsystem is again complicated by factors such
as the need for checking at both ends of a trunk if the VLAN is allowed to
traverse it, the fact that VLAN numbers on each end of non-trunk links need
not match (the number closer to the top of the tree should then be given
precedence and the lower VLAN numbers rewritten to match), that both
trunks and non-trunks can be blocked (again at either end) by the spanning
tree protocol and of course that it needs to be highly efficient and scalable
in the case of large networks with thousands of switches and tens of
thousands of switch ports.

5.6 Problems

As already mentioned in the section on getDeviceData, a large amount of
developer effort went into its current form. In particular, the final design of
the OID database, one of the more significant new features of NAV v3,
required much discussion on the NAV developer mailing list before all
details were worked out to be as good and flexible as possible. In the end we
certainly believe it was well worth the effort.

As with any major software development project, a number of smaller
technical challenges were encountered during implementation; however
none were major and thanks to good communication, especially on the NAV
developer mailing list all were resolved within reasonable time.

The biggest challenge has been time, which, despite continuous
improvements in the tools used, is common for software development; one
reason of course being that more is expected in less time. Despite delays
because of the above mentioned longer than expected development time for
the OID database and getDeviceData it now appears an operational NAV v3
will go into service slightly delayed.

5.7 Further Work

NAV v3 is a major rework from previous NAV versions, and much effort
has gone into generalizing and creating a framework on which further
improvements can be built more easily. The frequent use of plugins is an
example of this, and much functionality has been separated out into
independent modules which facilitate code reuse. Example modules include

 - 45 -

SNMP data collection, sending and receiving of events, accessing NAVdb
and storing arbitrary information about a netbox; with the use of the
appropriate modules all of these tasks will typically only require one or two
extra lines of code in the client program.

In the next version of NAV we can really begin to benefit from this
framework in that new features are much easier to create, and we can try out
more experimental features. Some ideas which will in all probability be
found in the next NAV:

 Cam-logger converted to getDeviceData plugin; this will allow much

better control of scheduling, e.g. different scheduling for different types.

 Plugins that collect more inventory data from the routers and switches.

Some more long-term ideas which may appear in future NAV versions
depending on demand:

 getDeviceData plugins for collecting more statistics. Since

getDeviceData works in parallel the only limitation on the amount of
data collected is processing resources and network bandwidth; as both of
these increase with time we can also collect more data. Ideas include:

o Data volume from all switch ports (we do not collect data from
EDGE switches today).

o Real-time statistics (collected every N second) from a set of
netboxes on request, for viewing in vlanPlot for example.

o Collecting traps / other statistics from devices like the status of
fans, temperature, reboots, and also from external sensors for
temperature, air humidity, presence of water etc.

This is just a short list of things we can think of now; the most interesting
things are those which we have not yet thought of. Computer networks are,
like the rest of the computer industry, always in a state of rapid change and
progress, and thanks to the general framework we have created we can be
sure NAV will be able to evolve with them!

5.7 Concluding Remarks

A major goal of the new data collection system in NAV v3 is to minimize
the need for maintenance while better modeling real, modern networks;
things should “just work”. We believe this goal has largely been archived
based on the progress and improvements described in the preceding
sections.

The OID database, a feature long in the coming, and its implementation in
getDeviceData minimizes the effort necessary to support the introduction of
new types of network equipment as much as possible; in many cases almost

 - 46 -

no effort is required at all, and most significantly it can be handled without
the involvement of the NAV development team.

The enhancements to the cam logger, the network topology discovery
system and the vlan discovery system fulfills the second goal of more
closely modeling modern networks with the full support of reuse of VLAN
numbers.

A large numbers of development hours have gone into the realization of the
described improvements, but ultimately we feel the added value to NAV
administrators and reduced maintenance for NAV developers will
significantly outweigh the cost of development.

 - 47 -

6. New front end subsystems
6.1 Resources

Subproject number 5
Subproject leader Gro-Anita Vindheim
Developers Hans Jørgen Hoel
Hours Budget: 260 Used: 345
Objective achieved 70%

6.2 Main objective

 Introduce a web based front end to NAVdb. In other words, replace the

cumbersome seed text files of NAV v2. Completed.
 Internal and external status page: Create a more flexible status page. The

internal status page with user preferences is 100% completed. The
external page is postponed.

 Device Management: Create a system for managing a physical device’s
life, from arriving to the stock, through the operating phase, and until the
device is outdated.

6.3 Results

6.3.1 editDB: A web based front end to NAVdb

Previous versions of NAV are based on seeding the database from text files
which have been manually updated. tigaNAV introduces a web based
interface to the database, where the NAV administrator can add, edit and
delete network devices and other “NAV information”, like vlan
descriptions, organizational units etc. Figure 10 shows the edit database
main page.

The NAV administrator must still update the database manually (there is no
auto discovery of network devices), but by using the web interface there are
several advantages:

 When inserting a new network device, the registration process will

check the SNMP community, and give an error message if the wrong
community is given. It will also check the type, making sure NAV can
collect data from this type.

 The data collection from a new network device will start immediately,

the NAV administrator does not have to wait for the scheduled nightly
process.

 Better user interface. The NAV v2 seed text files consist of lines with

colon separated fields. There is no syntax checker as you edit the files.
Typical errors are missing or misplaced colons. These errors are not

 - 48 -

detected until the nightly cron process discovers it. And then again the
NAV administrator may not notice the log message. With the new NAV
v3 web interface the approach is more bullet proof, we give direct
feedback on errors.

 Easier to edit the seed data. As for adding new data, the data can be

edited using the same forms.

Figure 10: The edit database subsystem

6.3.1.1 Add, edit and delete operations

Figure 11 gives an example of a web form for adding a new entry into the
database. The shown form is for adding a new netbox (IP device) into
NAVdb.

The web interface also makes it easier to edit or delete seed information.
Figure 12 shows the web interface for editing and deleting equipment types.
The NAV administrator can select one or more types, and then choose the
intended action button. The edit button gives a pre-filled form for the NAV
administrator to edit, the delete button gives a list of the checked seed data,
and asks the NAV administrator to confirm the delete operation.

 - 49 -

Figure 11: Web form for adding a new netbox (IP device)

Figure 12: Form for editing or deleting equipment types

 - 50 -

6.3.1.2 Adding a new IP device (netbox)

As mentioned, most of the seed data insertions are straight-forward. This
does not include adding new IP devices (netboxes). Figure 13 shows the
flow diagram for adding a new IP device. We will comment on several
important aspects of the diagram:

 Category

Any device you add to NAV must be placed in an appropriate category.
The categories are slightly adjusted in tigaNAV (only minor changes).
We now have seven categories, five of these require SNMP support:

Cat Description SNMP

required
GW A router. Operates on layer 3 (IP layer). Yes
GSW A router and switch in one device. Operates on layer 2

and 3. A given port may be switched or routed. Ex. is
Catalyst 6500 in native mode or Catalyst 4500 sup4.

Yes

SW A switch. Operates on layer 2 (Mac layer). The SW
category was originally intended for core switches that
had vlans and trunking. If you prefer all switches may be
defined as category SW, also those that are in the EDGE-
group.

Yes

EDGE Edge-equipment. Operates on layer 2 (mac layer).
Physically a hub/hub stack or a switch/switch stack
where we do not use vlans. Distributes traffic to the end-
users (in some cases an edge-switch may forward traffic
to another edge-switch).

Yes

WLAN Wireless equipment, i.e. base stations, wireless bridges.
Operates on layer 2 (mac layer).

Yes

SRV Servers. Subcategories are frequently used here. No
OTHER Other equipment. Left over, everything else. I.e. vpn

concentrators, terminal servers etc. This equipment is
monitored by the status monitor, but NAV does not do
any SNMP gathering.

No

 The SNMP requirement

When a new IP device is registered and the selected category requires
SNMP, NAV will do an SNMP poll. If the poll fails, the NAV
administrator will be notified, and asked to check the SNMP community
string. The IP device will not be added to the database.

 Type

The type is derived from the IP device’s sysObjectID. If the
sysObjectID is not registered in the database, the adding process will be
aborted, and the NAV administrator is asked to add the new type with
the corresponding sysObjectID to the database (also a web interface, of
course).

 - 51 -

Figure 13: Flow diagram for adding an IP device

 - 52 -

 Serial number

The device’s serial number is checked. If it cannot be found through
SNMP requests, the NAV administrator will be asked to insert a unique
serial number for the IP device. The serial number is then checked
against the physical device table in the database. The physical device
aspect is described in section 6.3.3.

 Function and subcategories
The NAV administrator is asked to insert the function and subcategories.
These fields are optional.

o The function is a text string used to describe the operational
function of the device in question.

o The subcategory field can, as the name suggests, be used to
classify a device within the category. An example is to classify
the servers (category SRV) into the subcategories MAIL and
DNS. An IP device be a member of one or several subcategories.

Note that a network device must be up and running before it is added to
NAV, due to the SNMP request and type classification. This was not a
requirement in NAV v2. We have deliberately changed this to enforce the
NAV administrator to enter adequate data when a new device is to be
monitored.

6.3.1.3 Bulk import

As seen on the edit database index page (figure 10), there is also an option
of bulk import. This gives the NAV administrator the opportunity to add
more than one seed record at a time. The bulk import option can also import
files. The bulk import requires a given syntax for the order of the fields,
almost similar to the earlier seed data text file format. Bulk import will i.e.
be useful when migrating your seed data from NAV v2 to NAV v3.

6.3.2 The Status page

The status page (figure 14) gives an overall view of the operational status.
The NAV v2 status page showed only netboxes that were down. We have
expanded the scope and now give status on:

 netboxes (including shadow reports)
 modules (i.e. modules in a stack of switches)
 services running on servers (i.e. SMTP, http etc)

As new events are implemented, the status page will be expanded to cover
these events as well. Next in line are threshold alarms.

 - 53 -

Figure 14: The Status Page

6.3.2.1 Status Page Preferences

Since the status page covers so many events, we have implemented a
preference option. As indicated on figure 15, a logged in NAV user can set
his own preferences for the status page. The user can add, delete and
rearrange the sections on his status page. More importantly he can limit his
view to his organization (or a set of organizations), to a certain category of
devices, or a certain set of services etc.

Figure 15: User Preferences for the Status Page

 - 54 -

6.3.3 Device Management

6.3.3.1 The “device triangle”

So far NAV has only managed devices in operation. With tigaNAV we
introduce the concept of the “device triangle”. The goal is to have
information on the whereabouts of all physical devices at all times. This will
include historical information on movements and “milestone events”
regarding devices.

We introduce two new tables, named device and module. Their relation to
the netbox table is shown in figure 16.

Figure 16: The device triangle: tables device, module and netbox

All physical devices, both operational and on stock, can be registered in the
device table. The unique identifier is device’s serial number (if the serial
number is unavailable another unique labeling scheme is adequate).

A netbox (IP device) consists of one or more modules. A module is
physically either a module in a chassis-based switch/router or a switch
member of a switch stack. The modules are in turn devices with unique
serial numbers.

In this picture the netbox will relate to the physical device (module if you
wish) that has the IP-address configured.

6.3.3.2 The Device Lifecycle

Figure 17 illustrate typical processes in a device’s life. The processes can be
subdivided into stages; there are 5 stages in a device’s lifecycle:

1. Order: The device is ordered from the supplier.
2. Arrival: The device has arrived on the premises.
3. In operation: The device is put into operation.
4. Production: The device is doing its job.
5. RIP: The job is done.

 - 55 -

Figure 17: Processes in a device’s life

The longest stage is of course production. Here a number of events can
occur: software upgrades, temporary (unplanned) outages, special error
situations etc. The device may also be reassigned to a different location or to
a different IP device (joining another switch stack).

The RIP stage involves return of shipment to the supplier due to fault and
warranty. Or more typically, the device has done its job, it can no longer
keep pace with traffic development.

The processes trigger events. Events fall into one of two categories:

 Automatically detected events: Detected by the data collection system

 Manually registered events:

Registered using device management
or edit database (see chapter 6.3.1)

 - 56 -

Figure 18 gives an example showing the lice cycle of two switches:8

Figure 18: Life cycle of two physical devices

6.3.3.3 The Device Management Tool

Device management aims to give the NAV administrator a better way of
maintaining all this information. Figure 17 shows which operations the
device management tool manages.

Note that it is not compulsory to use the order and arrival processes, it is
meant as a supplement to those who do not have other logistic systems.

With the device management tool, the NAV administrators can view the
history of a physical device, including dates of order and arrival, when it
was placed in operation, software upgrades etc.9

As shown on figure 17, the NAV administrator can manually register error
messages related to incidents with netboxes or physical devices. This
information is also displayed in the device history overview.

Finally, device management provides a “manual module delete” option. At
times the network engineers will physically remove a module from a
chassis/stack. The data collection system will detect this, but has no way of
distinguishing a planned relocation from a real outage. The status page will
show the event as an outage.

8 Note that the fill color and border thickness are used in correspondence with figure 17,
thereby illustrating which NAV subsystems are involved in the different processes.

9 The data collection system (chapter 5) will detect changes in software version etc for a
given serial number, and trigger an event to Event Engine (chapter 4).

 - 57 -

This is where the “manual module delete” option comes in handy. The NAV
administrator can manually delete the modules that on purpose are taken out
of the chassis/stack in question.

6.4 Problems

The most complicated aspect of Edit Database is the add netbox procedure.
Unfortunately we did not design this process thoroughly in the early phases
of the project. We had to redesign the flow in October, which of course was
unfortunate.

6.5 Further work

We consider the edit database front end to be completed.

The external status page has been postponed. The goal was to create a
textual description of the outage, understandable for the common man.
Before this external page can be created, the service and network
dependencies must be further investigated.

The device management pages need to be restructured, to make the most out
of the device management tool.

 - 58 -

7: RRD Activities

Subproject number 6
Subproject leader John Magne Bredal
Developers John Magne Bredal, Erlend Mjaavatten
Hours Budget: 440 Used:
Objective achieved 75%

7.1 Main Objective

 Implement a RRD-database with complete overview of the RRD-files

that are created and used in NAV-v3 (completed).
 Enhancement of the script that makes the config-tree for Cricket, for

instance by using the RRD- and OID-database that are new in NAV-v3
(completed).

 A better and more flexible way to view graphs created with the data
from RRD-files. (completed).

 Sorted statistics for all RRD-data. (not completed).
 A new threshold monitor that is able to adjust threshold values on each

and every data source. (completed).
 Large scale Cricket test on a dedicated server. (not completed).
 Workaround for the retrieval of data to the network load map (vlanPlot)

so that we no longer see no load. (not completed).

7.2 Results

7.2.1 RRD database

The RRD database is currently functional and in use by the implemented
subsystems. The layout of the database is shown in figure 19. As we see
database contains two tables; rrd_file and rrd_datasource.

Each RRD file is registered in the rrd_file table, along with the path to the
file, the step in seconds for how often it is updated, the netbox it is
associated with and the subsystem that is currently updating the file. The
key and value fields are optional in use and may for instance be used to
point to a field in another table that tells in more detail what type of data is
stored here.

 - 59 -

Figure 19: The RRD database

In rrd_datasource we store every data source that we collect data for in a
rrd_file. The name and description field tells what is stored here. dstype tells
us what type this datasource is, as we use RRDTool to create the RRD-files.
units is supposed to say what units are to be used on the y-axis of the graph
(seconds, bytes and so on). The last four fields (threshold, max, delimiter
and thresholdstate) is used by the threshold monitor.

7.2.2 makecricketconfig

makecricketconfig is the script that makes the config-tree for Cricket. It has
been active since the start of NAV-development and has gone through a
series of enhancements. In NAV-v3 the following enhancements have been
made:

 Total rewrite of script to get rid of a messy structure which has been the

result of a number of additions to the script.
 The use of .nav config-files in the config-directory structure. These files

help makecricketconfig take the right decisions when building the
config-tree.

 Use of RRD-database for storing of RRD-information.
 Use of OID-database to make correct configuration for the different

network equipment types.
 No more need for a dedicated tree of default config-files. We now edit

the default config-files directly.

 - 60 -

7.2.2.1 The .nav-config files

The .nav-config files help makecricketconfig make the right decisions when
building the config-tree. The files are hidden (they start with a dot). This is
intentional because otherwise the compile-script that Cricket uses will think
that the file is a part of its configuration during compile time.

The first .nav file is in the top of the config-tree. This file tells
makecricketconfig what directories to make config for. In each of these
directories there must be another .nav-file. This file in turn tells
makecricketconfig what kind of config is to be stored here, for which type
of network equipment. The file also has options for the naming of the files
and how to make a description of each view. This is in great aid especially
when making configuration for interfaces.

7.2.2.2 Use of the RRD database

The RRD-database is described earlier. The use of this database will make
finding and access to RRD-files easier than before. makecricketconfig fills
this database with the information it has after building the config-tree. It will
not delete tuples in the database, as these files may still exists even though
they are not present in the config. The reason for this is that a device may
temporarily not respond when making the config-tree, and we do not want
to lose information stored in the RRD-file just because of that. Another
script will take care of the deletion of unused RRD-files in the database.

7.2.2.3 OID database / direct editing of Default-files

The OID database is used in the making of the config-tree. Based on the
information there, we edit the Cricket Default-files and make target types
for the different types of network equipment. This will minimize errors from
Cricket based on not being able to find the correct OIDs on the network
equipment during collection of data. Minimizing errors also minimize the
time used for collection of data. This is one of the main improvements of the
script.

7.2.3 A better and more flexible way to view graphs

Cricket presents us with a directory structure when viewing graphs. This is
not the best way to easily select the graphs you want to see, and may lead to
an unnecessary series of clicking before the wanted results are presented.
This has been improved in NAV-v3. The way this has been done is by
linking the graphs from other subsystems of NAV-v3. In that way you can
see the graphs you want to see from i.e. the Device Browser. In this way we
don't need a special browser for this purpose, we just use other subsystems.
And if users want to use the old Cricket interface, then this is of course also
possible.

 - 61 -

A special module has been made to simplify access and graphing of
information from RRD-files. This module is written in Python and offers an
interface both to other scripts and to the web-pages (as they are written in
Python too). The module offers the following methods:

 access to numerical values from RRD-files.
 simple mathematical operations on the data
 generation of graphs
 dynamical addition and removal of datasources to the graphs
 generation of url's to graphs generated by the module

The RRD-browser, documented in section 9.3.5, makes use of this Python
module.

7.2.4 Sorted Statistics for all RRD data

This subproject has not been completed. There are however work in
progress.

7.2.5 Threshold Monitor

A new and improved threshold monitor has been made. The work with this
monitor was simplified enormously by the python module mentioned in
section 7.2.3 above together with the RRD database.

The threshold monitor uses four fields in the RRD-database for storing of
different information about thresholds. All the fields are in the
rrd_datasource table.

 threshold: the threshold value to be checked on this data source. This

may be stored as an integer or a percentage number.
 max: the max value that this data source may be. This is only important

if the threshold value is stored as a percentage, in which we use this field
to calculate the percentage in use (see example below).

 delimiter: tells us if the value must be higher or lower than the threshold
to trigger an alert. The delimiter is either < (less than) or > (greater
than).

 threshold state: if this is set to "active" we have sent an alert on this data
source, if it is inactive we have not. In an ideal world every threshold
state is set to "inactive".

 - 62 -

Example of use of the fields:

For each datasource where threshold is set:

if threshold is percentage:
 value = value_from_file * 100 / max
else:
 value = value_from_file

if value delimiter (< or >) threshold and thresholdstate is
inactive:
 set thresholdstate to active
 send activealert
if not value delimiter (< or >) threshold and thresholdstate
is active:
 set thresholdstate to inactive
 send inactivealert

The threshold for sending an inactive alert is adjusted by a certain
percentage of the active alert threshold. The reason for this is that we do not
want to send a series of active/inactive alerts when the value is going up and
down in the threshold-area.

7.2.6 Large Scale Cricket Test

On networks the size of NTNU's we have a lot of network equipment. As
statistical data of this equipment may help the troubleshooting of various
network anomalies, it is desirable to have as much statistics as possible. As
the number of units to gather data from increases, this of course takes more
and more time. Cricket gathers by default data every fifth minute. This
means that we must be able to gather all the data we want within five
minutes, or some data may be lost or become inaccurate. At the moment we
are not able to collect data from all the equipment we want to because of
this.

There is a simple solution to this, and it is called parallelization. The only
problem is that by doing multiple collections at the same time, we create a
higher demand for CPU power. This demand is so high that prior tests on
NAV-installations show that we need a dedicated computer for this task.
More CPU power means more parallel collections and more data in those
five minutes.

As this has not been tested we need to do a full scale test on NTNU's
network to see how much data we are able to collect in those five minutes.
As we regard our network to be fairly large, this will be a good indication of
how much power that is needed in any installation of NAV.

This task has not been done, and is not planned in nearby future. As this is
not a critical task in NAV-v3, it is postponed until time and equipment is
available.

 - 63 -

7.2.7 Reliable Collection of Data to the network load map

This task is postponed as the network load map (vlanPlot) is not yet ported
to NAV v3.

7.3 Problems

makecricketconfig is dependant on a well-working database to make a
correct config-tree. There are situations, which normally should not occur,
where the script will mess up the Cricket Default files. Future versions of
the script should be able to avoid these situations.

7.4 Further Work

 There is currently no automatic making of views for the target types that

are made by makecricketconfig. This is a major drawback and must be
fixed before a beta-launch of the system.

 At the moment, the threshold monitor does not send alarms to the event

engine. This is of course an extreme drawback and must be fixed before
a launch of the system.

 The script that deletes unused RRD-files is not functional. There are

however only minor details that lack to make a working copy of this
script.

 - 64 -

8. Enhanced Message of the Day
8.1 Resources

Subproject number 7
Subproject leader Gro-Anita Vindheim
Developers Bjørn Ove Grøtan
Hours Budget: 120 Used: 80
Objective achieved 75%

8.2 Main objective

The main objective of this subproject is to provide a message system the
NAV operators can use to inform about planned outage, and inform during
problem solving of unplanned outage. The NAV users will also be able to
subscribe to these messages, by mail or SMS.

An RSS feed will also be provided by the message system, to enable other
user interfaces (such as Innsida, NTNU specific) to import the information.

During the project, the message system evolved to include a “put on
maintenance” option, setting a room (wiring closet), network device or
service (ssh, web) on maintenance for a given timeframe. If the surveillance
system reveals outage during the device’s maintenance timeframe, the NAV
users will not be notified.

8.3 Results

As described in the previous section, a room (wiring closet), a netbox (IP
device) or a service can be set on maintenance. For simplicity, this chapter
will use the term unit when referring to one of these.

8.3.1 Message of the day

The main page for inserting messages supports two languages, Norwegian
and English. It is an ordinary web form, where the NAV operator fills in the
appropriate data, such as title, short description, technical description,
affected users and timeframe. There is a checkbox to indicate whether one
or more units are to be set on maintenance in connection with the message
inserted.

A message can be of one of three types:

 Informational. Message intended to tell the users about a future
change, possibly with a due date and a description about how the
changes affect the users.

 - 65 -

 Error. Message intended to tell the users about error situations like
unplanned outage, and what is being done to fix it.

 Internal. Message intended for internal use only. It will not be
shown on the NAV front page unless the NAV user is logged in.

All active messages are shown on the web during their given timeframe. An
example is shown in figure 20.

Figure 20: Example of eMotD message as shown on the NAV main page

The NAV operator can supply more information to an existing message by
writing a follow-up message. The original message will then be outdated,
and the message system will show the new message.

The messages can be imported into other medias, using the defined RSS
feed.

8.3.2 Set on maintenance

By attaching the maintenance function to the message system, we force the
NAV operator to give a textual explanation of why a unit is set on
maintenance, and for how long. This prevents units being “on maintenance”
for weeks (or months).

The maintenance timeframe can be updated from the web interface. The
NAV administrator may for instance realize that the timeframe was set too
short (or too long). Sometimes a planned outage has to be postponed for
some reason.

The maintenance tool page also provides a view displaying all units with a
scheduled outage for the next 24 hours.

 - 66 -

8.3.3 Database design

The eMOTD database design consists of three tables, as shown on figure 21.

Figure 21: The eMOTD database design

The emotd table is the primary table, containing the message title, body,
published timeframe etc. The maintenance record is linked up to a given
emotdid, defining the maintenance timeframe and current state (active,
overridden, etc).

The emotd_related table keeps track of the units put on maintenance related
to a given emotdid. The key field defines the table name (i.e. netbox), and
the value field defines the primary key value in the table given by key. Note
that several emotd_related-records can be linked up to one emotdid. When
updating the maintenance timeframe for an emotd record, it will be updated
for all attached emotd_related records, because the timeframe is set in the
maintenance record only.

8.3.4 Background processes

As part of the maintenance system, there is a background process that
updates the state field in the maintenance table (see figure 20). The
background process also posts events to Event Engine. Event Engine will,
based on events from the maintenance background process, decide whether
the NAV users are to be notified of a given outage. Read more about the
Event Engine in section 4.3.1.

If a unit’s outage exceeds the maintenance timeframe, the NAV user can
experience receiving only one of the outage alarms. Figure 22 shows an
example where the planned outage starts before the predefined maintenance
timeframe. The NAV users will receive a boxDown alarm, but they will not
be notified when the device is operational again. We are aware of the
problem, but have no ideal solution at the moment.

 - 67 -

Figure 22: Example of inconsistent outage and maintenance timeframe.

8.4 Further work

The message system has all basic functionality. Further work should focus
on the user interface, making it more user friendly.

 - 68 -

9. Device Browser
9.1 Resources

Subproject number 8
Subproject leader Morten Vold
Developers Magnus Nordseth, Stian Søiland
Hours Budget: 400 Used: 430
Objective achieved 75%

9.2 Main objective

The goal of the device browser subproject was to get a unified starting point
for examining a device, its relations to other devices and a short view of
other information available on the device.

The idea is that the NAV user could start by visiting the specific device he
had in mind, clicking further up or down on what might be interesting. The
page should provide basic information on the device and links to more
details, both within the device browser itself and other parts of NAV.

9.3 Results

9.3.1 General view

A device browser page for a netbox varies according to what information is
available, type of device, etc. The look-and-feel should be rather consistent
between different views, though, although it might not always be clear for
the user why some information is not available and displayed. We have
however currently decided that this is a better solution than having a lot of
fields with "No information available".

An example is given in figure 23. As shown the device browser displays
basic information for a given netbox, like current status (up/down),
availability (ping times), IP address, category, localization and type. All
grouping parameters, like category and room, provide links to a report of
netboxes in the given set. Availability percentages links to the RRD
browser.

Recent alerts from alerthist are listed, however there is currently no link to
'All alerts'.

If there are known RRD statistics for this netbox registered in the database,
(usually from cricket), they are listed with links to the RRD browser.

 - 69 -

Figure 23: The Device Browser

9.3.2 Services

For a server, services monitored on the server are listed. For each service,
availability statistics are provided, these are links to the RRD browser as
well. In addition, selecting a service handler displays statistics for all
monitoring on the given service. Such tables are sort able, in this example
services are sorted according to availability.

Figure 24: Services view in device browser

 - 70 -

There is a 'grand total' view of services giving a quick view to the current
status as a matrix of netboxes and services (see figure 25). This matrix could
be extended to include monitoring of services that should not be present.
(Currently a subproject at ITEA systemdrift).

Figure 25: The services matrix

Links to editDB are provided for both the netbox and the services, although
there is currently no easy way to add a service from this interface.

9.3.3 Modules and Ports

For network equipment, especially switches, modules and their ports are
listed. The device browser makes a simple guess on the layout of the switch
to get a nice listing of the ports, see figure 26.

For each port it is possible to see its current status by the graphical legend
(although the color scheme is not perfect). By moving the mouse over a
port, textual information is shown, like "10 Mbit, half duplex, trunk".
Clicking on a port goes to a separate port page showing port information
(like vlans and uplinks) and statistics that might be available for the port.

 - 71 -

Figure 26: The Device Browser Switch View

9.3.4 Proper URLs

We have put an effort into creating URLs that are easy to read, remember
and give away. For example:

 a view of the machine magma.itea.ntnu.no would be shown at:

http://beta.nav.ntnu.no/browse/magma.itea.ntnu.no/

 information on a given port behind a switch:

/browse/blasal-sw2.ntnu.no/module1/port2/

 a listing of all netboxes running the service smb

/browse/service/smb/ .

9.3.5 RRD browser

At a point, the RRD browser was integrated into the device browser instead
of living its own life. The reason for this was that RRD statistics are tightly
bound to specific devices, and this gave easier access to providing one-liner-
statistics in the device browser. The RRD browser uses the underlying
modules documented in 7.2.4. Functionality in the RRD browser includes:

 A mechanism to select a set of RRD datasources and display them all on
the same web page.

 - 72 -

http://beta.nav.ntnu.no/browse/magma.itea.ntnu.no/

 Mechanisms to zoom in on a graph, i.e. alter the default scaling that was
chosen for you.

 Mechanisms to join two or more graphs in the same graph view. The
reverse operation is also supported; you may split combined data in
separate graph views. You may also remove RRD sources from your
view.

An example is given in figure 27.

We consider the RRD browser immature. tigaNAV has implemented a proof
of concept that we would like to elaborate on next year. In our opinion, the
RRD browser will be a very powerful tool, where the NAV user can
combine the statistics he is interested in one view. In many cases this will
give a whole new dimension to interpreting the incident at hand.

Figure 27: The RRD browser

9.4 Problems
During development, what made the most trouble was unreliable data in the
database. Displaying modules and ports requires correct representations in
the database, but debugging these parts was difficult when getDeviceData
was in constant development and changing the content of the database all
the time.

Without proper tests to run for getDeviceData, motivation decreased at
severe levels at times. At some phases of the tigaNAV project, even the very
late phases, the database design seemed to change all the time, causing all
web pages to break repeatedly.

Also, inconsistencies in the database used for development continued to live
for a long time. It was decided at an early stage to use full sysnames (ie.
magma.itea.ntnu.no instead of magma.itea), but this was never fixed in

 - 73 -

the database. Likewise, at one point the tigaNAV project decided to go for
UTF8 in the database to be consistent with character sets, but this was never
fixed as well, giving the rather weird <?>-characters seen on the screenshots
of this chapter.

The database had redundant tables and fields that were only relevant for
NAVv2, and since they were not removed, they confused us several times
when we tried to decide what information to retrieve from the database.

If any conclusions could be drawn from this, it could be to use separate
databases while developing, as a changing database scheme and content
confuses and causes trouble for other developers. Although this would cause
an overhead in integration cycles, it would be the proper thing to do when
lacking full unit tests for all parts of NAV.

The real way to go would be to have full unit tests, written by using test
driven development (writing tests before code), having free ownership of
code (everyone can fix)10 and proper change management for last-minute-
changes of database schemas or APIs.

9.4 Further work
 IP-address should link to a VLAN report

 Servers should display which switch port they are on, giving a link to
the "mother" switch

 More integration with editDB

 Switch port legends are still not perfect, colors are too alike

 Links to reports should use simpler, easier to understand reports

 More parts of NAV should link to the device browser

 Much of the code should be refactored. This goes specially for: -
dispatcher.py - urlbuilderpy

 Service dependencies are not addressed in tigaNAV.

 Integration with eMOTD

9.5 Concluding remarks
The device browser has fulfilled a need for getting a “physical” view of a
single device in NAV. The browser is still not tested much with actual users
(much due to the lack of proper data to show), so it is not easy to define at
this point if the device browser will do the job.

10 Note from the project leader: The current policy is that everyone can fix, although this is
not widely deployed.

 - 74 -

However, the device browser seems like a very good starting point, taking
focus away from database specific listings and focusing on what
information is available.

 - 75 -

10. Round Trip and Packet loss
10.1 Resources

Subproject number 9
Subproject leader John Magne Bredal
Developers Magnus Nordseth
Hours Budget: 40 Used: 20
Objective achieved 50%

10.2 Main objective

This small subproject has had two objectives:

 Make the round trip and packet loss data available through the RRD
database (completed).

 Look into Cisco’s SAA solution and see if it can be integrated in
NAV in some way (postponed / deprecated)

10.3 Results

Response time and packet loss data were made available with the pping and
servicemon development project in NAVMore. The principle has been to
input data directly into RRD during the monitoring operation of the two
daemons.

The add-on made in tigaNAV has merely been to update the new RRD
database with metadata (see chapter 7.2.1 for more). In addition the
statistics have been made available from the Device Browser (chapter 9) and
through the RRD browser (ch 9.3.5).

We give two examples in figure 28 and 29.

 - 76 -

Figure 28: Packet loss and roundtrip time

Figure 29: service (imap) availability and response time

 - 77 -

11. New Network Utilities
11.1 Resources

Subproject number 10
Subproject leader Gro-Anita Vindheim
Developers Sigurd Gartmann (+ Kristian Eide11)
Hours Budget: 80 Used: 40 (+90)
Objective achieved 30%

11.2 Main objective

The main objective of this subproject is to create web interfaces for the
following:

 List all machines behind a given switch port at a given time
 Display recently used switch ports
 Give an on-the-fly status for the switch ports of a given switch

We also include the network explorer in this chapter, even though it
formally is outside the scope of tigaNAV.

11.3 Results

11.3.1 Machines behind a switch port

The machine tracker is one of the key features of NAV v2. The ability to
locate a machine in the network at a given time (with a history of 30 days) is
very important. tigaNAV has ported the NAV v2 solution without altering
the basic functionality.

In addition one significant enhancement has been made: Now the machine
tracker can display all machines (mac addresses) that have been detected
behind a given switch port at a given time.

11.3.2 Recently used switch ports and on-the-fly status

The “recently used ports” and the “on-the-fly-status” will both use the
switch port view designed by the device browser. Because of this
dependency, the features have been postponed until the device browser is
ready. We have, however, implemented these two features in a NAV v2
toolkit, though with a different look-and-feel.

11 Development of Network Explorer.

 - 78 -

Technically speaking the “recently used ports” is merely an SQL-query in
the cam table. “On-the-fly status” is a bit trickier. In the NAV v2 toolkit we
do a live SNMP poll on the switch in question and collect the relevant
information. For NAV v3 we will implement an “update” button in the
device browser’s switch view. An “update” will trigger an event for Event
Engine, who in turn will instruct getDeviceData to collect the data from the
switch in question. The advantage of this approach is that we update
NAVdb at the same time. The challenge is how to inform the device
browser that the job is done (the response time may vary since we are doing
live SNMP polls). One solution is to include a timestamp in the database
giving information on the “freshness” of the switch port data.

11.3.3 Network Explorer

The network explorer was implemented after NAVMore, prior to tigaNAV.
We have a running implementation at NTNU that works with the NAV v2
database. The solution is not yet ported to NAV v3, but this is not expected
to require much work.

Network Explorer will complement the network load map12. A limitation of
the network load map is that it does not give an overall view of the topology
of an entire vlan. The NAV user has to click his way from switch to switch
and memorize where he has been in order to get the complete picture.

Network explorer, on the other hand, does not display traffic. So it certainly
does not replace the network load map. But when it comes to topology we
consider the network explorer superior. The tool also has some very useful
search options as well.

Figure 30 gives an impression of the tool. The top level shows all the routers
in the network as a list (we do not show the interconnection between routers
as the network load map does). Each router can be expanded by pressing the
plus-button (+). An expanded router shows the second level, i.e. all router
ports with corresponding IP prefixes, their description and corresponding
vlan number. A given subnet / vlan can be expanded further to show the
layer two structure with all interconnected switches. For each switch we
display the port number and port name and the connected netboxes, if any.

In addition we have implemented a search tool. The NAV user may search
for a netbox (sysname / IP address). If found, Network Explorer will
automatically expand the relevant part of the network structure and mark the
device you searched for. In fact, figure 30 shows a search for the server
named ludvig.

12 The network load map (vlanPlot) is the graphical front end of NAV v2 displaying
network traffic and topology in a graphical drill-down view. The network load map is
further documented in the NAVMe report (the 2001 NAV development project).

 - 79 -

Similarly one can search for a specific switch port name (or part of the
name), or all equipment in a room (wiring closet) or all switch ports
connected to a vlan. More searches can easily be implemented.

Finally the idea is to have the network explorer link to the device browser at
the netbox level. These two tools alone will prove a significant
improvement to NAV.

Figure 30: Network Explorer

 - 80 -

12. Version Control and Software Build
12.1 Resources

Subproject number 11
Subproject leader Morten Vold
Developers Morten Vold
Hours Budget: 80 Used: 120
Objective achieved 80%

12.2 Main objective

We want to restructure the CVS repository layout from one that mirrors an
installed NAV system into one that resembles a typical source code tree. In
such a tree, source code is grouped into subsystems, and is more readily
available to a software build system.

Also, we wanted to restructure the installation layout of NAV into one that
more resembles a typical UNIX directory hierarchy.

A better software configuration/build system for NAV as a whole was
needed, to escape from the monolithic one-script know-it-all approach to
installing NAV.

12.3 Results

12.3.1 CVS vs. Subversion

NAV used CVS as its version control system. CVS is an old hack upon
RCS, and although mature and proven, contains many design flaws which
prevent it from growing beyond its current limitations. After considering
alternatives, it was felt that Subversion would be a worthy replacement.
Subversion is aimed specifically at replacing CVS, and has been written
from scratch to do so.

As an "improved" RCS, CVS still revolves around versioning single files.
One result of this is the lack of atomic commits, something Subversion
features from the ground up. Subversion versions entire change sets as one
revision.

Another important feature of Subversion is the ability to rename and move
files and directories while keeping their history. In CVS, renaming or
moving a file means creating a new file and deleting the old file. The new
file will have no history of where it came from in the repository.
Restructuring NAV's CVS repository would be painful with this restriction,
whereas with Subversion it would be trivial.

 - 81 -

After some research, Subversion was compiled, installed and tested on
bigbud, the server running the NAV CVS repository. After successful
testing, the CVS repository was converted into a Subversion repository. The
new Subversion repository was networked using Apache+SSL and was
operative from July 1st.

The Subversion command line client is so similar to CVS in daily use, that
no special training of NAV developers was needed. The new repository was
in full use by everyone on day one. There have not been any Subversion-
related problems since the conversion, and feedback has been nothing but
positive.

12.3.2 Restructuring source code repository layout

NAV v3 has introduced many subsystems, both new and rewritten. Most of
the subsystems consist of several source code modules, configuration files
and documentation. Each new subsystem has been grouped below the
subsystem/ directory of the Subversion repository. This structure allows for
a developer to find all files related to a particular subsystem in one place,
rather than all over the repository.

The Java subsystems inherited from NAV v2 were already grouped under
the src/ directory. So far, these subsystems have remained in this directory,
and new Java subsystems, such as getDeviceData and event Engine, have
also been placed here.

Many outdated and unused files have been removed from the repository,
and most existing subsystems have been moved to a corresponding directory
below the subsystem/ directory (for instance, the SMS Daemon can now be
found as subsystem/smsd/.

12.3.3 Software build system

A build system has been partly established. For the Java subsystems, Ant
was already used as the build software, but for the NAV package as a
whole, we now use the GNU utilities autoconf and make.

When fully established, building and installing NAV from source code will
be a simple, auto magic process. This process can be used as part of
building a software package for different Linux distributions or UNIX
variants. E.g. we want to create RPM packages of NAV for Mandrake Linux
and Red Hat Linux.

The NAV v2 installer can simply be described as a large, monolithic script
that knows everything about installing every little part of NAV. The new
build system delegates the responsibility for installation to the developer of
each subsystem. If the build and/or installation procedure of a subsystem
changes, the developer who made the change must also change his
Makefile.

 - 82 -

At the root of the source code repository lies the configure.in file, which is
input to the autoconf tool. Autoconf reads configure.in and creates a shell
script called configure. This script will configure the software package
"NAV" for a build on a particular platform. The script can be run with
parameters to set the installation path of different parts of NAV. This
enables us to build a NAV package to be installed somewhere different than
the default /usr/local/nav/.

The configure script will search the local system for prerequisites needed to
build the NAV package. Every subsystem will have one or several Makefile
templates, called Makefile.in. These templates contain macros referring to
the installation paths of NAV and the tools needed to build NAV. The
templates are processed by the configure script, and the macros are
expanded, resulting in pure Makefiles.

A Makefile is input to the make tool, which, generally speaking, is a tool to
resolve dependencies between files. make is probably the most common
build tool in any UNIX environment. To build the NAV package (that is,
prepare the source tree in whatever manner needed to produce installable
files - such as compiling source code into binaries), all one has to do is issue
the make command in the root of the source code tree. When the package
has been built, it can be installed by issuing the command make install.

If one wants to build or install only one of the subsystems, one can enter
that subsystem's directory and issue one's make-commands there. This is
very useful for a developer who wants to install only the subsystem he/she
just made a bug fix to.

12.3.4 Restructuring installation layout

All the code of NAV v2 was hard coded to find all NAV related files below
/usr/local/nav. NAV v2 also featured the principle of splitting the
installation into two mirroring directory hierarchies navme/ and local/,
where the former contained the installed version of NAV and the latter was
meant for local extensions and any data that was generated by NAV (such as
log files, Cricket statistics and so forth).

The build system enables us to configure NAV as a software package to be
installed in any location in the file system. Different parts of NAV can even
be installed in different locations. The goal is for a typical NAV installation
to have a typical UNIX-like directory layout directly below /usr/local/nav/
(or any other prefix) such as in figure 31.

 - 83 -

PID files for NAV

Logs generated by

State files generated by

NAV shared Python

NAV shared Perl

NAV shared Java

NAV shared

NAV start/stop scripts

NAV configuration

Binaries, executable NAV

run

java

perl

python

log

init.d

var

lib

etc

bin

<installation prefix>

Figure 31: NAV v3 preferred installation layout

To achieve this, the build system dynamically creates library modules for
both Perl and Python, containing the full paths to the different parts of NAV
as configured by the configure script. A Perl or Python script that needs to
know where a NAV related file resides needs only to include its respective
path module.

Previously, these scripts also needed to hardcode the path to the actual
library modules to include. This should no longer be necessary - it is now
required that the NAV libraries are on the search path of the respective
programming language. For Perl and Python this is typically achieved by
respectively setting the PERL5LIB and PYTHONPATH system wide
environment variables.

While many scripts have been converted to use these modules to discover
the correct paths for NAV files, the hunt for scripts using hard coded paths
is still going on. Also, this strategy has not been completed for Java
programs.

12.4 Problems

No particular problems were encountered in this subproject.

 - 84 -

12.5 Further work

 All hard coded NAV paths must be found and eliminated from the

source code.

 A path module for Java must be generated by the build process.

 Makefile.inS must be written for every subsystem.

 There are still files that need to be moved within the Subversion

repository, from the old location into the subdirectory of their respective
subsystems.

 A system for generating packages (rpm, deb and so forth) for the most

popular Linux distributions must be devised.

 Prerequisites of NAV that do not exist in packaged versions for these

popular distributions should be packaged by us and offered in an ftp
repository as a service to NAV users.

12.6 Concluding remarks

Unfortunately, this subproject wasn't very well specified in the original
project plan. The activities have evolved quite a bit, and as a result, the
actual number of hours used has grown beyond the budgeted hours.

Although the objectives weren't achieved fully, the activities of this
subproject have laid a solid foundation for a flexible configuration and
installation system for NAV 3.0. Work on these activities continues
unabated after the conclusion of the tigaNAV project.

 - 85 -

13. NAV version 3

13.1 Summary of NAV v3 features

tigaNAV introduces many new features to NAV. We have also elaborated
on existing NAV v2 features, in some instances by replacing the code. Other
features are ported without added functionality.

Table 32 on the next page gives an overall overview of the complete NAV
v3 system. Some explanations and remarks are in order:

 Legend
● Implemented prior to project NAVMore, 2001 or earlier.
■ New or radically improved in project NAVMore (2002).
▲ Work done in project tigaNAV (2003).

(▲) Not completed in tigaNAV, to be done in 2004.

 Code maturity

Alpha Merely a proof of concept.
Beta Functionality in place, but needs further testing.

Stable Only minor bugs, if any.

 The first letter of the chapter reference
t The tigaNAV report (2003).
o The NAVMore report (2002, in Norwegian).
e The NAVMe report (2001, in Norwegian).

 Remarks (regarding tigaNAV results)

1 Accurate modeling of modules, parallel IP address spaces, closed vlan.
2 Radically improved: OIDdb, plug-in-based, type classifier.
3 Text files aborted, web front end.
4 History of physical devices with milestone events.
5 Uses the OID database.
6 Supports reuse of VLANs.
7 Uses the OID database
8 Same header and footer for all tools, common menu navigation, use of templating in the code.
9 One user database for both web access and alert profiles.

10 Radically improved, flexible, introduces hasPrivilege.
11 Not only boxDown status, also other events.
12 Message system to inform NAV users of planned outage, errors or other operational events.
13 All information on one device in one place / web page.

Will be part of Device Browser.
15 Tree structured graphical display of the network topology on a per vlan basis.
16 New feature: all machines behind a switch port.
17 Combine many RRD data sources on the same web page, or even in the same graph.
18 Reports on outage of modules in a chassis or a stacked (physically or virtually) switch.
19 Flexible threshold monitor allowing threshold to vary depending on the RRD data at hand.
20 More thoroughly documented in the NAVMore report.
21 Very flexible and general solution.
22 Also services and entire rooms can be on maintenance.
23 From CVS to subversion.
24 Not monolithic, but modular.

14

 - 86 -

 v3 Code maturity

NAV status 2003-12-01

v2

 p
or

te
d

 im
pr

ov
ed

 r
ep

la
ce

d

 n
ew

 a
lp

ha

 b
et

a

 st
ab

le

 c
ha

pt
er

 r
em

ar
k

Data collection
NAVdb - the network model ■ ▲ X t5.5.1 1
Data collection system ■ ▲ X t5.5.2 2
Seed files / web solution (editDB) ● ▲ X t6.3.1 3
Device management ▲ X t6.3.3 4
ARP-logger (IP - mac data) ● ▲ X e4.5.8
CAM logger (mac - switch port data) ■ ▲ X t5.5.3 5
Network topology discovery ● ▲ X t5.5.4
Vlan discovery ● ▲ X t5.5.5 6
Statistics
Cricket network statistics collection ● ▲ X t7.2.2 7
Cricket server statistics collection ■ X o3.3
RRD roundtrip and packet loss ■ X t10
GUI and Users
Consistent web user interface ▲ X t3 8
User database ● ▲ X t2.3.1 9
User authorization (●) ▲ X t2.3.2 10
User preferences ▲ X t3.3.5
Tools
Operational status page ● ▲ X t6.3.2 11
Message system ▲ X t8 12
Report generator ● ▲ X e4.5.1
Switch port to room data (▲)
Device browser ▲ X t9 13
 - Currently active switch port status (▲) t11.3.2 14
 - Recently used switch ports (▲) t11.3.2 14
Network explorer (▲) t11.3.3 15
Network load map ● (▲) e.4.5.3
Machine tracker ■ ▲ X t11.3.1 16
Sorted statistics (■) o3.2
RRD browser ▲ X t9.3.5 17
Allocated prefix matrix ■ ▲ X o2.7
Cisco syslog analysis ■ (▲) o2.4
NAVlog system ■ (▲) o2.4
Monitors
Status monitor ● ■ X o3.4
Module monitor ▲ X t5.5.2 18
Service monitor ■ X o3.5
Threshold monitor ● ▲ X t7.2.5 19
Events and Alarms t4 20
Event engine and event queue ■ X o3.6
 - shadow alarms ● ■ X o3.6.3
Alert engine ● ■ X o3.8
SMS alarms ● ▲ X t4.3.3
User alert profiles ● ▲ X t4.3.4 21
Maintenance ● ▲ X t8.3.2 22
SNMP trap reception ● ▲ X e4.5.6
System
Software version control ● ▲ X t12.3.1 23
Software build system ● ▲ X t12.3.3 24

Table 32: NAV v3 features

 - 87 -

13.2 NAV v3 Test and Release Plan

Our initial release plan was to have a running alpha test at NTNU by
October 1 and have NAV v3 shipping by December 1. Due to delays (and
we comment further on that in the next chapter) this has not been possible.

We have reviewed our estimated release schedule:

Activity Timeframe / deadline
Alpha test December 2003, January 2004
Beta test February - March 2004
Development of (▲) - features December 2003 – April 2004
Release NAV v3 April 2004
Wish list new features Deadline May 14. 2004
Functional requirements v3.1 Deadline June 4, 2004
Development NAV v3.1 Summer 2004

This schedule may change. Consider it the recommendation of the tigaNAV
project leader.

Further comments:

Alpha phase
This stage focuses on testing of basic functionality. The testing will be
formalized with a test plan specifying all the functional aspects that should
be tested. The actual testing will be done by the NAV staff in ITEAs
network group (3-4 persons). Tests that fail will go back to the developers
for bug fixing. The testing will include setting up test network devices
(testing module monitor, shadow tests etc). All tests must pass before we
enter the beta phase.

Beta phase
We would like three beta installations of NAV: NTNU, UiTø and HiMolde.
The purpose of the beta phase is twofold:

1. Feedback from NAV users on bugs they find, feedback on the user
interface, usability etc. Bugtracker will be used for bug reporting.

2. More intricate testing by the alpha test team, including special
scenarios that might occur in a production environment (all the
stupid things users may do, all the strange ways one may design a
network ;)).

Development of (▲)-features
As table 32 points out, not all planned NAV v3 functionality is
implemented. The rows marked with the (▲) symbol need completion.
There is also a need for improvements in other tools. Please note, we are not
talking about new features, but completing planned NAV v3 functionality.

 - 88 -

This work will be done with deadline of April 2, 2004, prior to the release of
NAV v3.

New features for NAV v3.1
There will be a general feature freeze on NAV v3 until the summer of 2004.
We also want the next development project to be less ambitious, not
introducing fundamental changes to NAVdb, the data collection system or
event / alert engine. The development will primarily focus on adding new
functionality to the existing tools.

The next development project should also have a formalized requirement
specification. The requirements should be based on NAV users’ input and
the NAV staff’s overall thoughts. We have set a deadline for NAV user
feedback giving enough time to write the requirement specification.

 - 89 -

14. Summary and Conclusion

14.1 Project Self Criticism

Development of NAV v3 started with project NAVMore in the summer of
2002, one and a half year ago. We have continued with tigaNAV and we see
now, finally, a complete system, at least in its alpha phase. Release is set for
April 2004.

Ideally a software development project should not use so much time from
implementation to rollout. In our defense we should add that some of the
early NAV v3 results have been in use at NTNU. But still, the project leader
certainly takes criticism on the overall progress.

There are many reasons for the delays:

 NAV has always been an ambitious project, NAV v3 has perhaps been

too ambitious. For the event and alert system and for the data collection
system we reached a point of no return. We saw that hours and progress
were growing way beyond budget. Still the belief in the new and
improved system has been strong. The project leader means, and has
always meant, that it is worth it. Yes – we are delayed. Yes – planning
has in some cases been bad. Yes – the project leader has received and
deserved criticism on project leadership.

 In addition there has been the shift towards more professionalism in the

software development process. The basic perl-scripts of the old days will
no longer do. Neither will the impulse motivated way of programming.
A paradox perhaps, because this has definitely been one of our strengths.
We have seen a problem at hand, grasped it and solved it. An important
aspect has been the tight couple between the engineers running the
network and the developers. In some cases the network engineers
themselves have done the development. Again – a benefit of being
small, but it will not do anymore.

 The shift towards more professional software engineering has also had

its downsides. This has been necessary, no doubt. And on a general basis
for the highly qualified development team, it has been no problem. In
fact it has been motivated by the team itself. But there are examples of
personnel not being able to adopt to this new level. For them their era as
NAV programmers may be over (but their contribution will not be
forgotten!).

 Not only has NAV grown as a product, the development team has also

grown. tigaNAV has had 14 persons in work – a large group to
administrate. The personnel have also been from different groups within
ITEA and two programmers have been from UNINETT. There have
been some “cultural” challenges. The expanded focus on system

 - 90 -

management has also, in some cases, introduced conflicts in goals, or at
least conflicts in focus. We have also had examples of personnel being
delayed, not delivering according to plan, not showing up on meetings
and so forth. A stronger project leadership may have resolved some of
these issues, but not all.

 Then there has been the mishap of altering the data collection system on

the development machine, which in fact has resulted in poor test data for
the tool developers. Our intention was to avoid this by using the old
collection system, but since we (unfortunately!) introduced database
changes at a far too late point in time, we reached a stage where data
were inconsistent. This has definitely introduced frustration and delays
for tool developers.

 Another underestimated challenge has been the training of new project

members. For the project leader and the “base crew”, NAV is a part of
life, so to speak. We have a lot of knowledge from our history, we take
certain things for granted. We also have an understanding of the network
we want to manage. For new personnel it must have been difficult to
grasp it all. The project leader has not spent enough time to
communicate our ideas and thoughts. And since documentation in some
cases is poor, there have been few alternatives. Having said this,
discussions on the nav-developers list have resolved many issues.

 The project plan has been too vague. Prior to development an extensive

requirements specification should be made. This has been skipped due to
lack of time. The “base crew” has had an overall idea of what we want,
but for the developers a written list of requirements is far better. And in
fact, all aspects have not been thoroughly thought through beforehand,
resulting in fundamental changes at a far too late a stage in the project
lifetime.

 Finally subsystem integration has been poor. In fact it has hardly been

planned. The project plan focuses on each subproject and the work
within it. The challenges with integration have been skipped. This
should be a more structured process, and it should not be delayed to the
very end. A suggestion for the future is to develop separate, but system-
integrate weekly. A separate installation should be running at all times
with nothing but working code from the versioning repository.

So it seems, we are not perfect? There is room for improvement. Still,
having said that, on an overall basis, we should be pleased! A very
enthusiastic group – a highly competent group – has worked hard (at times
overly hard) and produced a lot of good stuff.

With all self criticism left behind, let us conclude in a more optimistic
manner. Because, no doubt, speaking in technical terms, speaking of real
world results, the tigaNAV crew has definitely made many great
improvements:

 - 91 -

 - 92 -

14.2 Conclusion

The development of NAV has from its very beginning in 1999 till now been
an iterative process; we have gradually evolved. NAVdb and the data
collection system is the heart of our system; we have used a lot of energy to
improve, and improve again, this fundamentally important base. tigaNAV
has been no exception. We must emphasize however, that the achievements
done now are final.

tigaNAV introduces great improvements with the OID database and a
(semi-) automatic type classifier. Data collection is done in parallel within a
plug-in based architecture. The NAV v2 seed files are history, the edit
database tool gives a far better user interface.

tigaNAV has also focused on NAV as a software product. NAV v3 will be
consistent in look-and-feel, we have adopted a general and powerful
authentication and authorization mechanism, we have a proven version
control system and we have introduced a standard programming language
(python) in the user interface combined with use of templating. We have
also replaced the monolithic installation scheme with a modular software
build system.

Finally tigaNAV introduces many new features to NAV. Not everything is
finished, but it will be within the timeframe set for NAV v3 release in April
2004. Table 32 in the previous chapter gives a good overview of all NAV v3
features. To summarize, the most significant tigaNAV functional results are:

 A more general operational status page with status on all operational

events (eventually). An integrated message system to inform NAV users
of scheduled outage, special faults and other operational events.

 The device browser presenting all information on a device in one web
page with links to reports, statistics, switch port data etc.

 The network explorer introducing a graphical display of the network
layout on a per vlan basis.

 An RRD browser with the ability to gather different statistics on the
same page or even in the same graph.

 Device management with the ability to track milestone events of
physical devices from order and arrival through the operational stages.

tigaNAV has certainly improved NAV in many aspects. The project has
suggested a timeframe for NAV v3 release. We recommend a more
conservative model for improvements in 2004. The overall goal must be to
offer a stable NAV v3 for NTNU and for interested UNINETT members.

After that – after all – the NAV must go on!

